Деполяризация клеточной мембраны

Физиология. Критический уровень деполяризации

Деполяризация клеточной мембраны

Вся нервная деятельность успешно функционирует благодаря чередованию фаз покоя и возбудимости. Сбои в системе поляризации нарушают электрическую проводимость волокон. Но кроме нервных волокон есть и другие возбудимые ткани — эндокринная и мышечная.

Но мы рассмотрим особенности проводимых тканей, и на примере процесса возбуждения органических клеток расскажем о значении критического уровня деполяризации. Физиология нервной деятельности тесно связана с показателями электрического заряда внутри и снаружи нервной клетки.

Если один электрод присоединить к внешней оболочке аксона, а другой – к его внутренней части, то видна налицо разность потенциалов. Электрическая активность нервных проводящих путей основана на этой разности.

Что такое потенциал покоя и потенциал действия?

Все клетки нервной системы поляризованы, то есть имеют разный электрический заряд внутри и снаружи специальной мембраны. Нервная клетка всегда имеет свою липопротеиновую мембрану, имеющую функцию биоэлектрического изолятора. Благодаря мембранам создается потенциал покоя в клетке, который необходим для последующей активации.

Потенциал покоя поддерживается путем переноса ионов. Выход ионов калия и вход хлора увеличивает потенциал мембранного покоя.

Потенциал действия накапливается в фазе деполяризации, то есть подъема электрического заряда.

Фазы потенциала действия. Физиология

Итак, деполяризация в физиологии — это снижение мембранного потенциала. Деполяризация основа возникновения возбудимости, то есть потенциала действия для нервной клетки. При достижении критического уровня деполяризации никакой, даже сильный раздражитель не способен вызвать реакции нервных клеток. Натрия при этом очень много внутри аксона.

Сразу после этой стадии следует фаза относительной возбудимости. Ответ уже возможен, но лишь на сильный сигнал-раздражитель. Относительная возбудимость медленно переходит в фазу экзальтации. Что такое экзальтация? Это пик возбудимости тканей.

Все это время натриевые каналы активации закрыты. А их открытие произойдет, только когда нервное волокно разрядится. Реполяризация нужна для восстановления отрицательного заряда внутри волокна.

[attention type=yellow]

Итак, возбудимость, это в физиологии способность клетки или ткани отреагировать на раздражитель и генерировать какой-то импульс. Как мы выяснили, для работы клеткам нужен определенный заряд — поляризация. Нарастание заряда от минуса к плюсу называется деполяризацией.

[/attention]

После деполяризации всегда идет реполяризация. Заряд внутри после фазы возбуждения снова должен стать отрицательным, чтобы клетка могла подготовиться к следующей реакции.

Когда показания вольтметра зафиксированы на отметке 80 – это фаза покоя. Она наступает после окончания реполяризации, а если прибор показывает положительное значение (больше 0), значит, обратная реполяризации фаза, приближается к максимальному уровню — критическому уровню деполяризации.

Как передаются импульсы от нервных клеток к мышцам?

Электрические импульсы, возникшие при возбуждении мембраны, передаются по нервным волокнам с большой скоростью. Скорость сигнала объясняется строение аксона. Аксон частично обволакивается облочкой. А между участками с миелином находятся перехваты Ранвье.

Благодаря такому устройству нервного волокна положительный заряд чередуется с отрицательным, и деполяризационный ток практически единовременно распространяется вдоль всей длины аксона.

Сигнал о сокращении доходит до мышцы в доли секунды. Такой показатель, как критический уровень деполяризации мембраны означает ту отметку, при которой достигается пиковый потенциал действия.

После сокращения мышцы вдоль всего аксона запускается уже реполяризация.

Что происходит при деполяризации?

Что значит такой показатель, как критический уровень деполяризации? Это в физиологии означает, что нервные клетки уже готовы к работе. Исправная работа целого органа зависит от нормальной, своевременной смены фаз потенциала действия.

Критический уровень (КУД) равен приблизительно 40–50 Мв. В это время электрическое поле вокруг мембраны уменьшается. Степень поляризации напрямую зависит от того, сколько натриевых каналов клетки открыто.

Клетка в это время еще не готова к ответу, но собирает электрический потенциал. Этот период имеет название абсолютная рефрактерность. Длится фаза всего 0,004 с в нервных клетках, а в кардиомиоцитах – 0,004 с.

После прохождения критического уровня деполяризации наступает супервозбудимость. Нервные клетки могут дать ответ даже на действие подпорогового раздражителя, то есть относительно слабого воздействие среды.

Функции натриевых и калиевых каналов

Итак, важный участник процессов деполяризации и реполяризации белковый ионовый канал. Разберемся, что подразумевает под собой это понятие.

Ионные каналы — это находящиеся внутри плазменной оболочки белковые макромолекулы. Когда они открыты, через них могут проходить ионны неорганического происхождения. Белковые каналы имеют фильтр.

Через натриевый проток проходит только натрий, через калиевый — только этот элемент.

Эти электроуправляемые каналы имеют двое ворот: одни активационные, обладают свойством пропускать ионы, другие инактивационные. В то время, когда мембранный потенциал покоя равен -90 мВ, ворота закрыты, но при начале деполяризации, натриевые каналы медленно открываются. Увеличение потенциала приводит к резкому закрытию створок протока.

Фактором, который влияет на активацию каналов, является возбудимость мембраны клетки. Под действием электрической возбудимости и запускаются 2 вида ионовых рецепторов:

  • запускается действие лиганд рецепторов — для хемозависимых каналов;
  • электрический сигнал подается для электроуправляемых каналов.

При достижении критического уровня деполяризации мембраны клетки рецепторы дают сигнал о том, что все натриевые каналы нужно закрыть, а калиевые начинают открываться.

Натриево-калиевый насос

Процессы передачи импульса возбуждения везде проходят благодаря электрической поляризации, осуществляемой за счет движения ионов натрия и калия. Движение элементов происходит на основе принципа активного транспорта ионов – 3 Na+ внутрь и 2 К+ наружу. Этот механизм обмена называется натриево-калиевым насосом.

Деполяризация кардиомиоцитов. Фазы сокращения сердца

Сердечные циклы сокращений также связаны с электрической деполяризацией проводимых путей. Сигнал о сокращении всегда исходит от СА-клеток, находящихся в правом предсердии, и распространяется по проводящим путям Гисса в пучок Тореля и Бахмана в левое предсердие. Правые и левые отростки пучка Гисса передают сигнал в желудочки сердца.

Нервные клетки быстрее деполяризуются и переносят сигнал благодаря наличию миелиновой оболочки, но мышечные ткани также постепенно деполяризуются. То есть их заряд из отрицательного превращается в положительный. Эта фаза сердечного цикла называется диастолой. Все клетки тут соединены между собой и действуют как один комплекс, поскольку работа сердца должна быть максимально скоординирована.

Когда наступает критический уровень деполяризации стенок правого и левого желудочков, генерируется выброс энергии — происходит сокращение сердца. Затем все клетки реполяризуются и готовятся к новому сокращению.

Депрессия Вериго

В 1889 году описано явление в физиологии, которое называется католической депрессией Вериго.

Критический уровень деполяризации — это уровень деполяризации, при котором все натриевые каналы уже инактивированы, а вместо них работают калиевые.

[attention type=red]

Если степень тока еще больше увеличивается, тогда значительно снижается возбудимость нервного волокна. А критический уровень деполяризации при действии раздражителей зашкаливает.

[/attention]

Во время депрессии Вериго скорость проведения возбуждения понижается, и, наконец, совсем спадает. Клетка начинает адаптироваться за счет изменения функциональных особенностей.

Адаптационный механизм

Бывает, при некоторых условиях деполяризующий ток долго не переключается. Это свойственно сенсорным волокнам. Постепенное длительное повышение такого тока сверх нормы в 50 мВ приводит к увеличению частоты электронных импульсов.

В ответ на такие сигналы повышается проводимость калиевой мембраны. Активируются более медленные каналы. В итоге возникает способность нервной ткани к повторным ответам. Это называется адаптацией нервных волокон.

При адаптации вместо большого количества коротких сигналов клетки начинают аккумулировать и отдавать одиночный сильный потенциал. А интервалы между двумя реакциями увеличиваются.

Источник: https://FB.ru/article/364837/fiziologiya-kriticheskiy-uroven-depolyarizatsii

Разница между деполяризацией и гиперполяризацией

Деполяризация клеточной мембраны

Передача сигналов в нервной системе происходит в виде электрических импульсов. Эти электрические импульсы генерируются на мембране нервных клеток. Различные типы ионных каналов участвуют в передаче э

Передача сигналов в нервной системе происходит в виде электрических импульсов. Эти электрические импульсы генерируются на мембране нервных клеток. Различные типы ионных каналов участвуют в передаче электрических импульсов через нервные клетки.

Как правило, концентрация ионов натрия вне мембраны нервных клеток высока, в то время как концентрация ионов калия внутри мембраны нервных клеток высока. Потенциал на этой стадии известен как потенциал покоящейся мембраны.

Деполяризация и гиперполяризация – два варианта потенциала покоящейся мембраны.

главное отличие между деполяризацией и гиперполяризацией является то, что деполяризация относится к уменьшению потенциала покоящейся мембраны, тогда как гиперполяризация относится к увеличению потенциала покоящейся мембраны

Ключевые области покрыты

1. Что такое деполяризация
      – определение, происхождение, роль
2. Что такое гиперполяризация
      – определение, происхождение, роль
3.

Каковы сходства между деполяризацией и гиперполяризацией
      – Краткое описание общих черт
4.

В чем разница между деполяризацией и гиперполяризацией
      – Сравнение основных различий

Ключевые слова: потенциал действия, деполяризация, гиперполяризация, потенциал мембраны покоя, ионы натрия, порог

Что такое деполяризация

Деполяризация относится к потере поляризации, которая вызвана изменением проницаемости ионов натрия. Это приводит к миграции ионов натрия внутрь нервной клетки или мышечной клетки. Потенциал, когда нейрон находится в состоянии покоя, известен как потенциал покоя. Потенциал покоящейся мембраны составляет -70 мВ.

Однако, когда сигнал проходит через нейрон, потенциал действия создается деполяризующим током. Деполяризационный ток генерируется открытием каналов ионов натрия. Ионы натрия мигрируют внутри клетки снаружи. Когда потенциал мембраны достигает -55 мВ, создается потенциал действия. -55 мВ называется порогом. Потенциал мембраны при потенциале действия +30 мВ.

Изменение мембранного потенциала во время деполяризации показано на Рисунок 1.

Рисунок 1: Деполяризация

Поскольку потенциал действия является фиксированным значением, деполяризующий потенциал также является фиксированным значением. Мембранные потенциалы, которые меньше деполяризующих потенциалов, называют градуированными потенциалами. Градуированные потенциалы затухают во время передачи, в то время как потенциалы действия не теряют свою силу во время передачи.

Что такое гиперполяризация

Гиперполяризация относится к увеличению количества электрического заряда, что делает потенциал покоящейся мембраны более отрицательным. Гиперполяризация является противоположностью деполяризации.

Поскольку он увеличивает отрицательный заряд вне мембраны, инициирование потенциала действия предотвращается гиперполяризацией. Гиперполяризация происходит за счет раскрытия ионов калия. Ионы калия мигрируют вне клетки, в то время как ионы хлора мигрируют внутри клетки.

Движение ионов во время потенциала покоя, деполяризации и гиперполяризации показано на фигура 2.

Рисунок 2: Движение ионов во время потенциала покоя, деполяризации и гиперполяризации

Нервные клетки переходят в состояние гиперполяризации после потенциала действия. Рефрактерный период – это время между двумя потенциалами действия. Гиперполяризация – одно из событий, которое происходит в рефрактерном периоде.

Сходства между деполяризацией и гиперполяризацией

  • И деполяризация, и гиперполяризация – это два изменения потенциала покоящейся мембраны.
  • Деполяризация и гиперполяризация обусловлены открытием ионных каналов.

Определение

деполяризация: Деполяризация относится к потере поляризации, которая вызвана изменением проницаемости ионов натрия внутрь нервной клетки или мышечной клетки.

Гиперполяризация: Гиперполяризация относится к увеличению количества электрического заряда, что делает потенциал покоящейся мембраны более отрицательным.

Разница в заряде

деполяризация: Деполяризация делает внешнюю клеточную мембрану отрицательно заряженной, а внутреннюю часть мембраны положительно заряженной.

Гиперполяризация: Гиперполяризация делает внутреннюю часть клеточной мембраны более заряженной отрицательно, а внешнюю сторону мембраны более положительно заряженной по сравнению с покоящимся мембранным потенциалом.

Мембранный Потенциал

деполяризация: Деполяризация снижает мембранный потенциал.

Гиперполяризация: Гиперполяризация увеличивает мембранный потенциал.

Ионные Каналы

деполяризация: Деполяризация вызвана открытием ионно-натриевых каналов.

Гиперполяризация: Гиперполяризация вызвана закрытием натриевых каналов и открытием натриевых каналов.

Потенциал действия

деполяризация: Деполяризация вызывает активацию потенциала действия.

Гиперполяризация: Гиперполяризация предотвращает срабатывание потенциала действия.

Заключение

Деполяризация и гиперполяризация – это два типа мембранных потенциалов, которые возникают в клеточной мембране нервных клеток. Деполяризация – это уменьшение мембранного потенциала, который генерирует потенциал действия.

Гиперполяризация – это увеличение мембранного потенциала, который предотвращает генерацию потенциала действия.

Основное различие между деполяризацией и гиперполяризацией заключается в изменении мембранного потенциала в каждом типе мембранных потенциалов.

Ссылка:

1. «Потенциалы действий». Потенциалы действий,

Источник: https://ru.strephonsays.com/difference-between-depolarization-and-hyperpolarization

Мембранные потенциалы кардиомиоцитов

Деполяризация клеточной мембраны

Согласно традиционному представлению, причиной возникновения потенциалов клеток как в покое, так и при их активации является прежде всего неравномерное распределение ионов калия и натрия между содержимым клеток и экстрацеллюлярной средой.

Напомним, что концентрация ионов калия внутри клеток в 20—40 раз превышает их содержание в окружающей клетку жидкости (отметим при этом, что избыток положительных зарядов ионов калия внутри клеток компенсируется в основном анионами органических кислот), а концентрация натрия в межклеточной жидкости в 10—20 раз выше, чем внутри клеток.

Такое неравномерное распределение ионов обеспечивается активностью «натрий-калиевого насоса», т.е. N а+/К+-АТФ-азы.

Возникновение потенциала покоя обусловлено в основном наличием концентрационного градиента ионов калия.

Эта точка зрения обосновывается тем, что ионы калия внутри клетки находятся преимущественно в свободном состоянии, т.е. не связаны с другими ионами, молекулами, поэтому могут свободно диффундировать.

Согласно известной теории Ходжкина с соавторами, клеточная мембрана в состоянии покоя проницаема в основном только для ионов калия. Ионы калия диффундируют по концентрационному градиенту через клеточную мембрану в окружающую среду, анионы же не могут проникать через мембрану и остаются на ее внутренней стороне.

В связи с тем что ионы калия имеют положительный заряд, а анионы, остающиеся на внутренней поверхности мембраны, — отрицательный, внешняя поверхность мембраны заряжается положительно, а внутренняя — отрицательно. Понятно, что диффузия продолжается только до того момента, пока не установится равновесие между силами возникающего электрического поля и силами диффузии.

Мембрана в состоянии покоя проницаема не только для ионов калия, но и в небольшой степени для ионов натрия и хлора. Мембранный потенциал клеток представляет собой результирующую электродвижущих сил, генерируемых этими тремя каналами диффузии.

[attention type=green]

Проникновение натрия из окружающей жидкости внутрь клетки по концентрационному градиенту приводит к некоторому уменьшению мембранного потенциала, а затем – к их деполяризации, т.е. уменьшению поляризации (внутренняя поверхность мембран становится вновь положительно, а наружная — отрицательно заряженной).

[/attention]

Деполяризация лежит в основе формирования потенциала действия мембран.

Все клетки возбудимых тканей при действии различных раздражителей достаточной силы способны переходить в состояние возбуждения. Возбудимость — это способность клеток к быстрому ответу на раздражение, проявляющемуся через совокупность физических, физико-химических процессов и функциональных изменений.

Облигатным признаком возбуждения является изменение электрического состояния клеточной мембраны.

В целом проницаемость мембраны увеличивается (это одна из общетиповых реакций клетки на различные повреждающие воздействия) для всех ионов.

Вследствие этого ионные градиенты исчезают и разность потенциалов на мембране снижается до нуля. Это явление «снятия» (отмены) поляризации называют деполяризацией.

При этом внутренняя поверхность мембран становится вновь положительно, а наружная — отрицательно заряженной. Такое перераспределение ионов имеет временный характер; после окончания возбуждения исходный потенциал покоя вновь восстанавливается. Деполяризация лежит в основе формирования потенциала действия мембран.

Когда деполяризация мембраны достигает некоторого порогового уровня или превышает его, клетка возбуждается, т. е.

появляется потенциал действия, который представляет собой волну возбуждения, перемещающуюся по мембране в виде кратковременного изменения мембранного потенциала на небольшом участке возбудимой клетки.

[attention type=yellow]

Потенциал действия имеет стандартные амплитуду и временные параметры, не зависящие от силы вызвавшего его стимула (правило «все или ничего»). Потенциалы действия обеспечивают проведение возбуждения по нервным волокнам и инициируют процессы сокращения мышечных клеток.

[/attention]

Потенциалы действия возникают в результате избыточной по сравнению с покоем диффузии ионов натрия из окружающей жидкости внутрь клетки.

Период, в течение которого проницаемость мембраны для ионов натрия при возбуждении клетки возрастает, является весьма кратковременным (0,5— 1,0 мс); вслед за этим наблюдают повышение проницаемости мембраны для ионов калия и, следовательно, усиление диффузии этих ионов из клетки наружу.

Увеличение ионного потока калия, направленного из клетки наружу, приводит к снижению мембранного потенциала, что в свою очередь обусловливает уменьшение проницаемости мембраны для ионов натрия.

Таким образом, второй этап возбуждения характеризуется тем, что поток ионов калия из клетки наружу возрастает, а встречный поток ионов натрия уменьшается. Это продолжается до тех лор, пока не произойдет восстановление потенциала покоя.

После этого проницаемость для ионов калия также снижается до исходной величины.

Наружная поверхность мембраны за счет вышедших в среду положительно заряженных ионов калия опять приобретает положительный потенциал по отношению к внутренней. Этот процесс возвращения мембранного потенциала к исходному уровню, т.е. уровню потенциала покоя, называют реполяризацией.

Процесс реполяризации всегда продолжительнее процесса деполяризации и на кривой потенциала действия (см. ниже) представлен в виде более пологой нисходящей ветви. Таким образом, реполяризация мембраны происходит не в результате обратного перемещения ионов натрия, а вследствие выхода из клетки эквивалентного количества ионов калия.

В некоторых случаях проницаемость мембраны для ионов натрия и калия после окончания возбуждения остается повышенной. Это приводит к тому, что на кривой потенциала действия регистрируют так называемые следовые потенциалы, для которых характерны малая амплитуда и сравнительно большая длительность.

При действии подпороговых стимулов проницаемость мембраны для натрия возрастает незначительно и деполяризация не достигает критического значения. Деполяризацию мембраны меньше критического уровня называют местным потенциалом, который может быть представлен в виде «электротонического потенциала», или «локального ответа».

[attention type=red]

Местные потенциалы не способны распространяться на значительные расстояния, а затухают вблизи места своего возникновения. Эти потенциалы не подчиняются правилу «все или ничего» — их амплитуда и длительность пропорциональны интенсивности и длительности раздражающего стимула.

[/attention]

При повторном действии подпороговых стимулов местные потенциалы могут суммироваться, достигать критического значения и вызывать появление распространяющихся потенциалов действия.

Таким образом, местные потенциалы могут предшествовать возникновению потенциалов действия.

Особенно отчетливо это наблюдается в клетках проводящей системы сердца, где медленная диастолическая деполяризация, развивающаяся спонтанно, вызывает появление потенциалов действия.

Следует отметить, что трансмембранное перемещение ионов натрия и калия не является единственным механизмом генерирования потенциала действия. В его формировании также принимают участие трансмембранные диффузионные токи ионов хлора и кальция.

Изложенные выше общие сведения о мембранных потенциалах в равной степени относят как к атипичным кардиомиоцитам, формирующим проводящую систему сердца, так и к сократительным кардиомиоцитам — непосредственным исполнителям насосной функции сердца.

Изменения заряда мембран лежат в основе генерации электрических импульсов — сигналов, необходимых для согласования функционирования сократительных кардиомиоцитов предсердий и желудочков на протяжении сердечного цикла и насосной функции сердца в целом.

Специализированные клетки — «пейсмекеры» синусового узла обладают способностью спонтанно (без воздействия извне) генерировать импульсы, т. е. потенциалы действия.

[attention type=green]

Это свойство, получившее название автоматизм, имеет в своей основе процесс медленной диастолической деполяризации, заключающийся в постепенном снижении мембранного потенциала до порогового (критического) уровня, с которого начинается быстрая деполяризация мембраны, т. е. фаза 0 потенциала действия.

[/attention]

Спонтанная диастолическая деполяризация обеспечивается ионными механизмами, среди которых традиционно неспецифический ток ионов Na+ в клетку занимает особое положение. Однако, согласно современным исследованиям, на долю этого тока приходится лишь около 20% активности трансмембранного перемещения ионов.

В настоящее время большое значение имеет т. н. задержанный (запаздывающий) выходящий из клеток ток ионов К+. Установлено, что угнетение (задержка) этого тока обеспечивает до 80% автоматизма пейсмекеров синусового узла, а усиление тока К+ замедляет или вовсе останавливает пейсмекерную активность.

Существенный вклад в достижение порогового потенциала вносит ток ионов Са++ в клетку, активация которого оказалась необходимой для достижения порогового потенциала.

В этой связи с этим уместно обратить внимание на то, что клиницистам хорошо известно, насколько чувствителен синусовый ритм к блокаторам Са++-каналов (L-типа) клеточной мембраны, например, к верапамилу, или к бета-адреноблокаторам, например, к пропранололу, способным влиять на эти каналы через катехоламины.

В аспекте электрофизиологического анализа насосной функции сердца интервал между систолами равен отрезку времени, в течение которого мембранный потенциал покоя в клетках синусового узла смещается до уровня порогового потенциала возбуждения.

Три механизма оказывают влияние на продолжительность этого интервала и, следовательно, на частоту сердечных сокращений. Первый в наиболее важный из них — скорость (крутизна нарастания) диастолической деполяризации.

При ее возрастании пороговый потенциал возбуждения достигается быстрее, что детерминирует учащение синусового ритма. Противоположное изменение, т. е.

[attention type=yellow]

замедление спонтанной диастолической деполяризации, ведет к урежению синусового ритма.

[/attention]

Второй механизм, оказывающий влияние на уровень автоматизма синусового узла, — изменение мембранного потенциала покоя его клеток (максимального диастолического потенциала). При увеличении этого потенциала (в абсолютных значениях), т. е.

при гиперполяризации клеточной мембраны (например, под воздействием ацетилхолина), требуется больше времени для достижения порогового потенциала возбуждения, если разумеется скорость диастолической деполяризации остается неизменной.

Следствием такого сдвига будет уменьшение числа сердечных сокращений в единицу времени.

Третий механизм — это изменения порогового потенциала возбуждения, смещение которого по направлению к нулю удлиняет путь диастолической деполяризации и способствует урежению синусового ритма.

Приближение порогового потенциала к потенциалу покоя сопровождается учащением синусового ритма.

Возможны также различные комбинации трех основных эдектро-физиологических механизмов, регулирующих автоматизм синусового узла.

Фазы и основные ионные механизмы формирования трансмембранного потенциала действия

Различают следующие фазы ТМПД:

Фаза 0 — фаза деполяризации; характеризуется быстрой (в течение 0,01 с) перезарядкой клеточной мембраны: внутренняя ее поверхность становится положительно, а наружная — отрицательно заряженной.

Фаза 1 — фаза начальной быстрой реполяризации; проявляется небольшим начальным снижением ТМПД от +20 до 0 mV или чуть ниже.

Фаза 2 — фаза плато; относительно продолжительный период (около 0,2 с), во время которого величина ТМПД поддерживается на одном уровне

[attention type=red]

Фаза 3 — фаза конечной быстрой реполяризации; в течение данного периода восстанавливается исходная поляризация мембраны: наружная ее поверхность становится положительно-, а внутренняя — отрицательно заряженной (-90 mV).

[/attention]

Фаза 4 — фаза диастолы; величина ТМПД сократительной клетки сохраняется примерно на уровне —90 mV, происходит восстановление (не без участия Na+/K+-Hacoca) исходных трансмембранных градиентов ионов К+, Na+, Са2+ и СГ.

Для различных фаз ТМПД характерна неодинаковая возбудимость мышечного волокна.

В начале ТМПД (фазы 0,1,2) клетки полностью не возбудимы (абсолютный рефрактерный период). Во время быстрой конечной реполяризации (фаза 3) возбудимость частично восстанавливается (относительный рефрактерный период).

Во время диастолы (фаза 4) рефрактерность отсутствует и миокардиальное волокно полностью восстанавливает свою возбудимость.

Изменения возбудимости кардиомиоцита на протяжении формирования трансмембранного потенциала действия отражены на ЭКГ-комплексе.

Загрузка…

Источник: https://cardio-bolezni.ru/membrannye-potentsialy-kardiomiotsitov/

Будь здоров
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: