Диастолическая деполяризация

Мембранные потенциалы кардиомиоцитов

Диастолическая деполяризация

Согласно традиционному представлению, причиной возникновения потенциалов клеток как в покое, так и при их активации является прежде всего неравномерное распределение ионов калия и натрия между содержимым клеток и экстрацеллюлярной средой.

Напомним, что концентрация ионов калия внутри клеток в 20—40 раз превышает их содержание в окружающей клетку жидкости (отметим при этом, что избыток положительных зарядов ионов калия внутри клеток компенсируется в основном анионами органических кислот), а концентрация натрия в межклеточной жидкости в 10—20 раз выше, чем внутри клеток.

Такое неравномерное распределение ионов обеспечивается активностью «натрий-калиевого насоса», т.е. N а+/К+-АТФ-азы.

Возникновение потенциала покоя обусловлено в основном наличием концентрационного градиента ионов калия.

Эта точка зрения обосновывается тем, что ионы калия внутри клетки находятся преимущественно в свободном состоянии, т.е. не связаны с другими ионами, молекулами, поэтому могут свободно диффундировать.

Согласно известной теории Ходжкина с соавторами, клеточная мембрана в состоянии покоя проницаема в основном только для ионов калия. Ионы калия диффундируют по концентрационному градиенту через клеточную мембрану в окружающую среду, анионы же не могут проникать через мембрану и остаются на ее внутренней стороне.

[attention type=yellow]

В связи с тем что ионы калия имеют положительный заряд, а анионы, остающиеся на внутренней поверхности мембраны, — отрицательный, внешняя поверхность мембраны заряжается положительно, а внутренняя — отрицательно. Понятно, что диффузия продолжается только до того момента, пока не установится равновесие между силами возникающего электрического поля и силами диффузии.

[/attention]

Мембрана в состоянии покоя проницаема не только для ионов калия, но и в небольшой степени для ионов натрия и хлора. Мембранный потенциал клеток представляет собой результирующую электродвижущих сил, генерируемых этими тремя каналами диффузии.

Проникновение натрия из окружающей жидкости внутрь клетки по концентрационному градиенту приводит к некоторому уменьшению мембранного потенциала, а затем – к их деполяризации, т.е. уменьшению поляризации (внутренняя поверхность мембран становится вновь положительно, а наружная — отрицательно заряженной).

Деполяризация лежит в основе формирования потенциала действия мембран.

Все клетки возбудимых тканей при действии различных раздражителей достаточной силы способны переходить в состояние возбуждения. Возбудимость — это способность клеток к быстрому ответу на раздражение, проявляющемуся через совокупность физических, физико-химических процессов и функциональных изменений.

Облигатным признаком возбуждения является изменение электрического состояния клеточной мембраны.

В целом проницаемость мембраны увеличивается (это одна из общетиповых реакций клетки на различные повреждающие воздействия) для всех ионов.

Вследствие этого ионные градиенты исчезают и разность потенциалов на мембране снижается до нуля. Это явление «снятия» (отмены) поляризации называют деполяризацией.

При этом внутренняя поверхность мембран становится вновь положительно, а наружная — отрицательно заряженной. Такое перераспределение ионов имеет временный характер; после окончания возбуждения исходный потенциал покоя вновь восстанавливается. Деполяризация лежит в основе формирования потенциала действия мембран.

[attention type=red]

Когда деполяризация мембраны достигает некоторого порогового уровня или превышает его, клетка возбуждается, т. е.

[/attention]

появляется потенциал действия, который представляет собой волну возбуждения, перемещающуюся по мембране в виде кратковременного изменения мембранного потенциала на небольшом участке возбудимой клетки.

Потенциал действия имеет стандартные амплитуду и временные параметры, не зависящие от силы вызвавшего его стимула (правило «все или ничего»). Потенциалы действия обеспечивают проведение возбуждения по нервным волокнам и инициируют процессы сокращения мышечных клеток.

Потенциалы действия возникают в результате избыточной по сравнению с покоем диффузии ионов натрия из окружающей жидкости внутрь клетки.

Период, в течение которого проницаемость мембраны для ионов натрия при возбуждении клетки возрастает, является весьма кратковременным (0,5— 1,0 мс); вслед за этим наблюдают повышение проницаемости мембраны для ионов калия и, следовательно, усиление диффузии этих ионов из клетки наружу.

Увеличение ионного потока калия, направленного из клетки наружу, приводит к снижению мембранного потенциала, что в свою очередь обусловливает уменьшение проницаемости мембраны для ионов натрия.

Таким образом, второй этап возбуждения характеризуется тем, что поток ионов калия из клетки наружу возрастает, а встречный поток ионов натрия уменьшается. Это продолжается до тех лор, пока не произойдет восстановление потенциала покоя.

После этого проницаемость для ионов калия также снижается до исходной величины.

Наружная поверхность мембраны за счет вышедших в среду положительно заряженных ионов калия опять приобретает положительный потенциал по отношению к внутренней. Этот процесс возвращения мембранного потенциала к исходному уровню, т.е. уровню потенциала покоя, называют реполяризацией.

Процесс реполяризации всегда продолжительнее процесса деполяризации и на кривой потенциала действия (см. ниже) представлен в виде более пологой нисходящей ветви. Таким образом, реполяризация мембраны происходит не в результате обратного перемещения ионов натрия, а вследствие выхода из клетки эквивалентного количества ионов калия.

В некоторых случаях проницаемость мембраны для ионов натрия и калия после окончания возбуждения остается повышенной. Это приводит к тому, что на кривой потенциала действия регистрируют так называемые следовые потенциалы, для которых характерны малая амплитуда и сравнительно большая длительность.

[attention type=green]

При действии подпороговых стимулов проницаемость мембраны для натрия возрастает незначительно и деполяризация не достигает критического значения. Деполяризацию мембраны меньше критического уровня называют местным потенциалом, который может быть представлен в виде «электротонического потенциала», или «локального ответа».

[/attention]

Местные потенциалы не способны распространяться на значительные расстояния, а затухают вблизи места своего возникновения. Эти потенциалы не подчиняются правилу «все или ничего» — их амплитуда и длительность пропорциональны интенсивности и длительности раздражающего стимула.

При повторном действии подпороговых стимулов местные потенциалы могут суммироваться, достигать критического значения и вызывать появление распространяющихся потенциалов действия.

Таким образом, местные потенциалы могут предшествовать возникновению потенциалов действия.

Особенно отчетливо это наблюдается в клетках проводящей системы сердца, где медленная диастолическая деполяризация, развивающаяся спонтанно, вызывает появление потенциалов действия.

Следует отметить, что трансмембранное перемещение ионов натрия и калия не является единственным механизмом генерирования потенциала действия. В его формировании также принимают участие трансмембранные диффузионные токи ионов хлора и кальция.

Изложенные выше общие сведения о мембранных потенциалах в равной степени относят как к атипичным кардиомиоцитам, формирующим проводящую систему сердца, так и к сократительным кардиомиоцитам — непосредственным исполнителям насосной функции сердца.

Изменения заряда мембран лежат в основе генерации электрических импульсов — сигналов, необходимых для согласования функционирования сократительных кардиомиоцитов предсердий и желудочков на протяжении сердечного цикла и насосной функции сердца в целом.

[attention type=yellow]

Специализированные клетки — «пейсмекеры» синусового узла обладают способностью спонтанно (без воздействия извне) генерировать импульсы, т. е. потенциалы действия.

[/attention]

Это свойство, получившее название автоматизм, имеет в своей основе процесс медленной диастолической деполяризации, заключающийся в постепенном снижении мембранного потенциала до порогового (критического) уровня, с которого начинается быстрая деполяризация мембраны, т. е. фаза 0 потенциала действия.

Спонтанная диастолическая деполяризация обеспечивается ионными механизмами, среди которых традиционно неспецифический ток ионов Na+ в клетку занимает особое положение. Однако, согласно современным исследованиям, на долю этого тока приходится лишь около 20% активности трансмембранного перемещения ионов.

В настоящее время большое значение имеет т. н. задержанный (запаздывающий) выходящий из клеток ток ионов К+. Установлено, что угнетение (задержка) этого тока обеспечивает до 80% автоматизма пейсмекеров синусового узла, а усиление тока К+ замедляет или вовсе останавливает пейсмекерную активность.

Существенный вклад в достижение порогового потенциала вносит ток ионов Са++ в клетку, активация которого оказалась необходимой для достижения порогового потенциала.

В этой связи с этим уместно обратить внимание на то, что клиницистам хорошо известно, насколько чувствителен синусовый ритм к блокаторам Са++-каналов (L-типа) клеточной мембраны, например, к верапамилу, или к бета-адреноблокаторам, например, к пропранололу, способным влиять на эти каналы через катехоламины.

В аспекте электрофизиологического анализа насосной функции сердца интервал между систолами равен отрезку времени, в течение которого мембранный потенциал покоя в клетках синусового узла смещается до уровня порогового потенциала возбуждения.

Три механизма оказывают влияние на продолжительность этого интервала и, следовательно, на частоту сердечных сокращений. Первый в наиболее важный из них — скорость (крутизна нарастания) диастолической деполяризации.

При ее возрастании пороговый потенциал возбуждения достигается быстрее, что детерминирует учащение синусового ритма. Противоположное изменение, т. е.

[attention type=red]

замедление спонтанной диастолической деполяризации, ведет к урежению синусового ритма.

[/attention]

Второй механизм, оказывающий влияние на уровень автоматизма синусового узла, — изменение мембранного потенциала покоя его клеток (максимального диастолического потенциала). При увеличении этого потенциала (в абсолютных значениях), т. е.

при гиперполяризации клеточной мембраны (например, под воздействием ацетилхолина), требуется больше времени для достижения порогового потенциала возбуждения, если разумеется скорость диастолической деполяризации остается неизменной.

Следствием такого сдвига будет уменьшение числа сердечных сокращений в единицу времени.

Третий механизм — это изменения порогового потенциала возбуждения, смещение которого по направлению к нулю удлиняет путь диастолической деполяризации и способствует урежению синусового ритма.

Приближение порогового потенциала к потенциалу покоя сопровождается учащением синусового ритма.

Возможны также различные комбинации трех основных эдектро-физиологических механизмов, регулирующих автоматизм синусового узла.

Фазы и основные ионные механизмы формирования трансмембранного потенциала действия

Различают следующие фазы ТМПД:

Фаза 0 — фаза деполяризации; характеризуется быстрой (в течение 0,01 с) перезарядкой клеточной мембраны: внутренняя ее поверхность становится положительно, а наружная — отрицательно заряженной.

Фаза 1 — фаза начальной быстрой реполяризации; проявляется небольшим начальным снижением ТМПД от +20 до 0 mV или чуть ниже.

Фаза 2 — фаза плато; относительно продолжительный период (около 0,2 с), во время которого величина ТМПД поддерживается на одном уровне

[attention type=green]

Фаза 3 — фаза конечной быстрой реполяризации; в течение данного периода восстанавливается исходная поляризация мембраны: наружная ее поверхность становится положительно-, а внутренняя — отрицательно заряженной (-90 mV).

[/attention]

Фаза 4 — фаза диастолы; величина ТМПД сократительной клетки сохраняется примерно на уровне —90 mV, происходит восстановление (не без участия Na+/K+-Hacoca) исходных трансмембранных градиентов ионов К+, Na+, Са2+ и СГ.

Для различных фаз ТМПД характерна неодинаковая возбудимость мышечного волокна.

В начале ТМПД (фазы 0,1,2) клетки полностью не возбудимы (абсолютный рефрактерный период). Во время быстрой конечной реполяризации (фаза 3) возбудимость частично восстанавливается (относительный рефрактерный период).

Во время диастолы (фаза 4) рефрактерность отсутствует и миокардиальное волокно полностью восстанавливает свою возбудимость.

Изменения возбудимости кардиомиоцита на протяжении формирования трансмембранного потенциала действия отражены на ЭКГ-комплексе.

Загрузка…

Источник: https://cardio-bolezni.ru/membrannye-potentsialy-kardiomiotsitov/

Физиологические особенности и свойства сердечной мышцы

Диастолическая деполяризация

При создании данной страницы использовалась лекция по соответствующей теме, составленная Кафедрой Нормальной физиологии БашГМУ

Навигация:

  1. Проводящая система сердца
  2. Фазы возбуждения сердца

Сердечная мышца, также как и скелетная, обладает следующими физиологическими свойствами:

  • возбудимость,
  • сократимость,
  • проводимость.

Однако миокард в отличие от скелетной мускулатуры обладает еще одним особым свойством — автоматией.

Автоматия — это способность сердца ритмично возбуждаться и сокращаться без каких-либо влияний извне, то есть под влиянием импульсов, возникающих в нем самом.

Самопроизвольное возбуждение возникает в сердце в узлах и пучках проводящей системы.

[attention type=yellow]

на новости сайта в соцсетях!

[/attention]

Пожалуйста, примите участие в опросах по оценке качества сайта. Важен каждый голос!

Проводящая система сердца

К проводящей системе сердца относят следующие отделы:

1. Синусно-предсердный (синоатриальный узел):

  • располагается под правым ушком у места впадения верхней полой вены в правое предсердие,
  • находится под эпикардом,
  • площадь 20*2 мм2,
  • состоит из 40 тыс. клеток,
  • обильно снабжен капиллярами и нервами.

2. Межпредсердные и межузловые проводящие пути — передают возбуждение по предсердиям.

Их выделяют 3:

  • передний (пучок Бахмана),
  • средний (Веннебаха),
  • задний (Торела).

3. Предсердно-желудочковый узел (атрио-вентрикулярный):

  • располагается в нижней части межпредсердной перегородки,
  • под эндокардом правого предсердия,
  • иннервируется волокнами блуждающего и симпатического нервов.

4. Пучок Гиса отходит от атрио-вентрикулярного узла:

  • длина 8-10 мм,
  • идет по межжелудочковой перегородке,
  • на ее вершине раздваивается на правую и левую ножки.

5. Волокна Пуркинье:

  • сеть атипичных волокон в стенках обоих желудочков,
  • с них передается возбуждение на сократительный миокард желудочков.

Проводящая система сердца:

  • атипичные кардиомиоциты,
  • клетки богаты саркоплазмой,
  • поперечная исчерченность в них выражена менее четко,
  • мало миофибрилл,
  • сохраняет признаки эмбрионального миокарда,
  • устойчива к гипоксии,
  • энергия образуется за счет активации процессов анаэробного гликолиза.

Во время диастолы в клетках синоатриального узла (водитель ритма I порядка — пейсмейкер):

  • уменьшается мембранный потенциал, то есть происходит медленная диастолическая деполяризация (МДД);
  • мембранный потенциал (МП) достигает КУД, то есть МП изменяется с 50-60 мВ до 30-40 мВ самопроизвольно — потенциал действия (ПД) или пейсмекерный потенциал, который распространяется по проводящей системе сердца, переходит на миокард.

Особенности пейсмекерных клеток:

  1. низкий уровень мембранного потенциала (-50 — -60 мВ),
  2. способность к МДД (снижению МП до КУД самопроизвольно),
  3. низкая амплитуда ПД (-30 — -50 мВ) без реверсии (в основном).

Причины МДД (связана с особыми свойствами мембраны пейсмейкеров):

  • постепенное самопроизвольное увеличение в диастолу проницаемости мембраны для Na и Ca, входящих в клетку;
  • уменьшение проницаемости K, выходящую из клетки;
  • уменьшение активности Na-K насоса (Na-K-АТФ-азы).

Частота возбуждений в клетках синоатриального узла — 60-80 за 1 мин. Это водитель ритма I порядка.

Способностью к автоматии обладают все нижележащие проводящие системы сердца (атриовентрикулярный узел, пучок Гиса, волокна Пуркинье, атипичные волокна предсердия). Они являются в норме только потенциальными или латентными водителями ритма.

У атриовентрикулярного узла способность к автоматии — 40-50 имп/мин. Это водитель ритма II порядка.

Клетки пучка Гиса — 30-40 имп/мин.

Волокна Пуркинье — около 20 имп/мин.

В. Гаскелл ввел понятие о градиенте автоматии:

Чем дальше расположен очаг автоматии от венозного конца сердца и ближе к артериальному, тем меньшей способностью к автоматии он обладает

Истинным водителем ритма является клетки синоатриального узла.

Фазы возбуждения сердца

При возбуждении возбудимость тканей меняется, проходя через следующие фазы:

  • фаза абсолютной рефрактерности,
  • фаза относительной рефрактерности,
  • фаза экзальтации.

В сердечной мышце фаза абсолютной рефрактерности:

  • продолжается немного дольше, чем в скелетной;
  • длится всю систолу и захватывает начало диастолы.

Затем возбудимость миокарда постепенно восстанавливается до исходного уровня — это период относительной рефрактерности.

В период абсолютной рефрактерности сердечная мышца способна отвечать на сильный сверхпороговый раздражитель.

В сердце может возникать внеочередное сокращение — экстрасистола.

После экстрасистолы наступает удлиненная пауза между нею и следующей очередной систолой желудочков — компенсаторная пауза. Данная экстрасистола называется также желудочковой экстрасистолой.

Причиной компенсаторной паузы является то, что очередной импульс из синоатриального узла приходит в желудочки в тот момент, когда желудочки находятся в фазе абсолютной рефрактерности, возникшей во время экстрасистолы.

Предсердная экстрасистола — не сопровождается компенсаторной паузой; после нее происходит укорочение диастолы. В результате типичные кардиомиоциты не способны к тетанусу.

В сердце не может возникнуть тетаническое сокращение, что обеспечивает нагнетательную функцию сердца.

В типичных кардиомиоцитах:

  • высокий уровень МП — 80-90 мВ,
  • высокий уровень ПД (в желудочках до 120 мВ),
  • длительность ПД в желудочках 330 мс (0,33 с);
  • в предсердиях — 100 мс (0,1 с).

В ПД желудочков 5 фаз:

  • 0-нулевая фаза быстрой деполяризации,
  • 1-фаза быстрой начальной реполяризации,
  • 2-фаза плато,
  • 3-фаза быстрой конечной реполяризации,
  • 4-диастолический потенциал в период покоя, между ПД.

Фаза деполяризации: поступает Na в клетку, возникает состояние абсолютной рефрактерности.

Фаза быстрой начальной реполяризации: вход в клетку Cl.

Деполяризация вызывает активацию медленных Na и Ca каналов.

Поток Na и Ca приводит к развитию плато, так как их входу в клетку противодействует выход из клетки K и потенциал не меняется.

В период плато:

  • быстрые Na каналы инактивированы,
  • миокард находится в состоянии абсолютной рефрактерности.

Фаза конечной реполяризации:

  • медленные Na и Ca каналы закрываются,
  • поток выходящих ионов K усиливается.

Реполяризация вызывает постепенное закрытие K каналов и активацию Na каналов, следовательно, возбудимость постепенно восстанавливается — это период относительной рефрактерности.

Проводимость миокарда:

  • предсердий — 1 м/с,
  • желудочков — 0,8-0,9 м/с.

В пучке Гиса — 1-1,5 м/c, в волокнах Пуркинье — 3 м/c.

Разделы с похожими страницами

Источник: https://medfsh.ru/teoriya/teoriya-po-normalnoy-fiziologii/lektsii-po-normalnoj-fiziologii/fiziologicheskie-osobennosti-i-svojstva-serdechnoj-myshtsy

Будь здоров
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: