Дифферентные нейроны

Содержание
  1. Функции нейронов: как работают и какую задачу выполняют
  2. Основные понятия о функциях нейронов
  3. Функции нейронов
  4. Могут ли для улучшения функций нейронов образовываться новые нервные клетки ?
  5. Советы: как улучшить функции нейронов
  6. Могут ли нейроны умереть?
  7. Выводы о нейронных функциях
  8. Нейроны головного мозга – строение, классификация и проводящие пути
  9. Отростки
  10. Метаболизм в нейроне
  11. Функции нейрона
  12. Классификация нейронов
  13. Виды нейронов
  14. Развитие и рост нейронов
  15. Проводящие пути
  16. Проводящие пути головного мозга
  17. Взаимодействие с нейромедиаторами
  18. Восстанавливаются ли нервные клетки
  19. Влияние алкоголя на головной мозг
  20. Нервная ткань
  21. Клеточный состав нервной ткани
  22. Нейроглия
  23. Макроглия
  24. Микроглия
  25. Некоторые термины из практической медицины:
  26. Афферентные и эфферентные нервные проводники и их роль в психологии
  27. Как они работают вместе и чем отличаются
  28. Значимость нейронов

Функции нейронов: как работают и какую задачу выполняют

Дифферентные нейроны

Наше тело состоит из бесчисленного множества клеток. Приблизительно 100.000.000 из них являются нейронами. Что такое нейроны? Каковы функции нейронов? Вам интересно узнать, какую задачу они выполняют и что вы можете благодаря им делать? Подробнее – в статье психолога CogniFit (“КогниФит”) Патрисии Санчес Сейсдедос.

Вы когда-нибудь задумывались о том, как информация проходит через наше тело? Почему, если что-то причиняет нам боль, мы сразу же неосознанно одёргиваем руку? Где и как мы распознаём эту информацию? Всё это – действия нейронов.

Как мы понимаем, что это холодное, а это – горячее…а это мягкое или колючее? За получение и передачу этих сигналов по нашему телу отвечают нейроны.

В этой статье мы подробно расскажем о том, что такое нейрон, из чего он состоит, какова классификация нейронов и как улучшить их формирование.

Основные понятия о функциях нейронов

Прежде, чем рассказывать о том, каковы функции нейронов, необходимо дать определение того, что такое нейрон и из чего он состоит.

Вы хотите знать, как работает ваш мозг? Каковы ваши сильные и, возможно, ослабленные когнитивные функции? Присутствуют ли симптомы, свидетельствующие о наличии какого-либо расстройства? Какие способности можно улучшить? Получите ответы на все эти вопросы менее, чем за 30-40 минут, пройдя Общий когнитивный тест CogniFit.

Общий когнитивный тест CogniFit

Нейроны – это клетки, формирующие нервную систему, другими словами, нервные клетки. Самыми главными функциями нейронов являются получение информации и её передача посредством электрических импульсов по всем каналам коммуникации, по всей нервной системе. Для того, чтобы нейроны могли осуществлять свои функции, им необходимы следующие части, образующие структуру нейрона:

  • Сома: тело или главная часть нейрона. В ней находится ядро.
  • Аксоны: речь идёт о нервном волокне, через которое электрические импульсы передаются другим нейронам. В наиболее отдалённой от сомы части этого волокна находится много нервных окончаний, которые одновременно связываются с огромным количеством нейронов.
  • Дендриты: разветвлённые отростки нейрона, через которые нейрон получает информацию от других нейронов.

Форма, посредством которой могут между собой общаться нейроны (отправлять информацию и получать её от других нейронов) называется Синапс. Речь идёт о процессе, при котором аксон одного нейрона передаёт информацию дендритам другого нейрона (канал между двумя частями нейронов называют “синаптическая щель”).

Функции нейронов

Наше тело выполняет много задач и обрабатывает огромный объем информации, идущей от мозга через всю нервную систему. Вследствие этого нейронам необходимо иметь специализацию. По этой причине, несмотря на то, что основной функцией нейронов является получение и передача информации, существуют различные типы нейронов, различающихся по:

Функциям нейронов:

  • Моторные или эфферентные: отвечают за передачу информации в виде электрических импульсов от центральной нервной системы к мышцам или железам.
  • Чувствительные или афферентные: Нейроны, которые связывают наш мозг с внешним миром. Это нейроны, которые получают информацию от различных чувств, ощущений, таких как боль, давление, температура… Включая более специализированные нейроны, “говорящие” о вкусах и запахах.
  • Промежуточные/интеркалярные или ассоциативные нейроны: нейроны, обеспечивающие коммуникации между афферентными и эфферентными нейронами.

Структуре:

  • Униполярные: нейроны, обладающие только одним раздваивающимся отростком, выходящим из сомы, и работающие одновременно как дендрит и как аксон (вход и выход). В своём большинстве это сенсорные нейроны.
  • Биполярные нейроны: имеют два отростка, один из которых работает как дендрит (вход), а другой как аксон (выход). Этот вид нейронов находится в сетчатке, улитке или передней части ушного лабиринта, вестибулярной системе и обонятельной области слизистой оболочки носа.
  • Мультиполярные: этот вид нейронов преобладает в нашей центральной нервной системе. Обладают большим количеством входных отростков (дендритов) и только одним выходным (аксон). Находятся в головном или спинном мозге.

Типу нейротрансмиттера (нейромедиатора), усиливающего функцию нейрона:

  • Серотонинергические – производят Серотонин (связан с настроением).
  • Дофаминергические – производят Дофамин (связан с удовольствием).
  • ГАМК-ергические – производят ГАМК (основной тормозной нейротрансмиттер).
  • Глутаматергические – производят Глутамат (основной возбуждающий нейротрансмиттер, связанный с памятью и воспоминаниями).
  • Холинергические – производят Ацетилхолин (Нейромедиатор, широко распространённый в Центральной Нервной Системе. Многосторонни).
  • Норадренергические – производят Норадреналин/норэпинефрин (действует как нейротрансмиттер и как гормон. Связан с увеличением сердечного ритма и кровяным давлением).
  • Вазопрессинергические – производят Вазопрессин (играет ключевую роль в гомеостатическом регулировании жидкости, глюкозы и солей в крови).
  • Окситоцинергические – производят Окситоцин (связан с любовью, романтическими отношениями и сексуальным поведением…).

Могут ли для улучшения функций нейронов образовываться новые нервные клетки ?

Ранее считалось, что на протяжении человеческой жизни новые нейроны в мозге не образуются. Однако группа учёных Каролинского Медицинского Института (Швеция) провела эксперимент с использованием углерода-14, который показал, что в человеческом мозге, а именно, в Гиппокампе, ежедневно могут рождаться 1400 клеток. Однако с возрастом эта цифра сокращается.

Этот процесс формирования нейронов называется Нейрогенез. Тот факт, что даже в зрелом возрасте возникают новые нейроны, играет важнейшую роль для их функций, а также пластичности и способности мозга адаптироваться к новым ситуациям.

Советы: как улучшить функции нейронов

Как и всегда, здоровые привычки играют важную роль в оптимальном развитии функций нейронов. Наш мозг благодарит нас за заботу о теле. Как говорится, “в здоровом теле – здоровый дух”. Что мы можем сделать, чтобы улучшить пластичность мозга и нейрогенез?

  • Спать, отдыхая: необязательно спать строго 8 часов. У каждого из нас свой ритм сна, и есть люди, для которых вполне достаточно спать 7 или 7,5 часов. Однако важно, чтобы сон был восстанавливающим.
  • Использовать умеренные физические нагрузки и стимуляции: нейрогенез происходит для адаптации к окружающему миру. Это связано с преодолением трудностей для достижения наших целей, что, в свою очередь, задействует наши навыки принятия решений.
  • Избегать чрезмерного стресса: небольшой уровень стресса полезен, но всегда надо знать когда мы “переходим черту”.
  • Заниматься сексом: это отличный способ стимуляции и борьбы со стрессом, а также физическая нагрузка.
  • Делать упражнения для мозга:CogniFit (“КогниФит”) является лидером среди программ по когнитивной стимуляции, все упражнения можно выполнять онлайн с помощью любого устройства – компьютера, телефона, планшета. Нейропсихологи и нейроучёные разработали увлекательные упражнения в виде простых игр, с помощью которых можно профессионально “тренировать” основные функции головного мозга. Эта программа была высоко оценена научным сообществом и в настоящее время применяется в различных медицинских учреждениях, школах, колледжах и университетах по всему миру.

Недостаток сна, однообразие, постоянная рутина и высокий уровень стресса приводят к замедлению нейрогенеза.

Вы подозреваете у себя или своих близких депрессию? Проверьте, присутствуют ли симптомы депрессии с помощью инновационного нейропсихологического теста CogniFit на депрессию прямо сейчас!

Нейропсихологический тест CogniFit на депрессию

Могут ли нейроны умереть?

Конечно, и это происходит по разным причинам.

  • По программе (Апоптоз): В детстве, когда мы развиваемся, наш мозг производит клеток больше, чем мы используем. В определённый момент все эти незадействованные клетки программируют свою гибель. Это же происходит и в старости – с нейронами, которые уже не могут получать и передавать информацию.
  • Из-за асфиксии: Нейронам, как и нам, нужен кислород. Если они перестают его получать, то погибают.
  • Из-за болезней: Альцгеймер, Паркинсон, СПИД…
  • Из-за сильных ударов по голове: серьёзные травмы вызывают гибель нейронов. Это хорошо известно, например, в мире бокса.
  • Из-за интоксикации: Употребление алкоголя и других веществ может нанести урон нейронам, и как следствие, их разрушение.

Выводы о нейронных функциях

Мы с вами узнали о том, что нейроны – это маленькие связные, которые передвигаются по всему нашему телу. Таким образом, функции нейронов заключаются в получении и передаче информации, как от различных структур (мышц и желез), так и от других нейронов.

Сейчас мы уже можем ответить на вопрос, который был задан в самом начале статьи: почему, если что-то причиняет нам боль, мы сразу же неосознанно одёргиваем руку?Чувствительные нейроны получают информацию о боли, а моторные нейроны в ответ посылают сигнал убрать руку.

[attention type=yellow]

Мы увидели, что внутри нашего тела на протяжении всей жизни, всё время, каждую секунду, проходят бесконечные информационные, коммуникационные потоки и электрические импульсы.

[/attention]

Также мы с вами узнали о том, что наш организм постоянно находится в процессе развития, с момента рождения до старости. Наша нейронная структура в Гиппокампе также меняется, благодаря Нейрогенезу и гибели нейронов.

Призываю вас вести здоровый образ жизни, развлекаться, учиться и стремиться к личностному росту. Это поможет вам сберечь нейроны, ваших маленьких почтальонов.

Перевела с испанского Анна Иноземцева

Источник: https://zen.yandex.ru/media/cognifit/funkcii-neironov-kak-rabotaiut-i-kakuiu-zadachu-vypolniaiut-5a2518f900b3ddf5ab9fecbe

Нейроны головного мозга – строение, классификация и проводящие пути

Дифферентные нейроны

Каждая структура в организме человека состоит из специфических тканей, присущих органу или системе. В нервной ткани – нейрон (нейроцит, нерв, неврон, нервное волокно).

Что такое нейроны головного мозга? Это структурно-функциональная единица нервной ткани, входящая в состав головного мозга.

Кроме анатомического определения нейрона, существует также функциональное – это возбуждающаяся электрическими импульсами клетка, способная к обработке, хранению и передаче на другие нейроны информации с помощью химических и электрических сигналов.

Строение нервной клетки не так сложно, в сравнении со специфическими клетками прочих тканей, также оно определяет её функцию.

Нейроцит состоит из тела (другое название – сома), и отростков – аксон и дендрит. Каждый элемент неврона выполняет свою функцию. Сома окружена слоем жирной ткани, пропускающая лишь жирорастворимые вещества.

Внутри тела располагается ядро и прочие органеллы: рибосомы, эндоплазматическая сеть и другие.

Кроме собственно нейронов, в головном мозге преобладают следующие клетки, а именно: глиальные клетки. Их часто называют мозговым клеем за их функцию: глия выполняет вспомогательную функцию для нейронов, обеспечивая окружение для них. Глиальная ткань предоставляет возможность нервной ткани регенерации, питания и помогает при создании нервного импульса.

Количество нейронов в головном мозге всегда интересовало исследователей в области нейрофизиологии. Так, численность нервных клеток варьировалось от 14 миллиардов до 100. Последними исследованиями бразильских специалистов выяснилось, что число нейронов составляет в среднем 86 миллиардов клеток.

Отростки

Инструментом в руках нейрона являются отростки, благодаря которым нейрон способен выполнять свою функцию передатчика и хранителя информации. Именно отростки формируют широкую нервную сеть, что позволяет человеческой психике раскрываться во всей ее красе.

Бытует миф, будто умственные способности человека зависят от количества нейронов или от веса головного мозга, но это не так: гениями становятся те люди, у которых поля и подполя мозга сильно развиты (больше в несколько раз).

За счет этого поля, отвечающие за определенные функции, смогут выполнять эти функции креативнее и быстрее.

[attention type=red]

Аксон – это длинный отросток нейрона, передающий нервные импульсы от сомы нерва к другим таким же клеткам или органам, иннервируемым определенным участком нервного столба.

[/attention]

Природа наделила позвоночных животных бонусом – миелиновым волокном, в структуре которого находятся шванновские клетки, между которыми располагаются небольшие пустые участки – перехваты Ранвье. По ним, как по лесенке, нервные импульсы перескакивают от одного участка к другому.

Такая структура позволяет в разы ускорить передачу информации (примерно до 100 метров в секунду). Скорость передвижения электрического импульса по волокну, не обладающего миелином, составляет в среднем 2-3 метра в секунду.

Иной вид отростков нервной клетки – дендриты. В отличие от длинного и цельного аксона, дендрит является короткой и разветвленной структурой. Этот отросток не участвует в передачи информации, а только в ее получении.

Так, к телу нейрона возбуждение поступает с помощью коротких веток дендритов. Сложность информации, которую дендрит способен получит, определяется его синапсами (специфические нервные рецепторы), а именно его диаметром поверхности.

Дендриты, благодаря огромному количеству своих шипиков, способны устанавливать сотни тысяч контактов с другими клетками.

Метаболизм в нейроне

Отличительной особенностью нервных клеток является их обмен веществ. Метаболизм в нейроците выделяется своей высокой скоростью и преобладанием аэробных (основанных на кислороде) процессов.

Такая черта клетки объясняется тем, что работа головного мозга чрезвычайно энергоемкая, и его потребность в кислороде велика.

Несмотря на то, что вес мозга составляет всего 2% от веса всего тела, его потребление кислорода составляет примерно 46 мл/мин, а это – 25% от общего потребления организма.

Главным источником энергии для ткани мозга, кроме кислорода, является глюкоза, где она проходит сложные биохимические преобразования. В конечном итоге из сахарных соединений высвобождается большое количество энергии. Таким образом, на вопрос о том, как улучшить нейронные связи головного мозга, можно ответить: употреблять продукты, содержащие соединения глюкозы.

Функции нейрона

Несмотря на относительно не сложное строение, нейрон обладает множеством функций, главные из которых следующие:

  • восприятие раздражения;
  • обработка стимула;
  • передача импульса;
  • формирование ответной реакции.

Функционально нейроны подразделяются на три группы:

Афферентные (чувствительные или сенсорные). Нейроны этой группы воспринимают, перерабатывают и отправляют электрические импульсы к центральной нервной системе. Такие клетки анатомически располагаются вне ЦНС, а в спинномозговых нейронных скоплениях (ганглиях), или таких же скоплениях черепно-мозговых нервов.Посредники (также эти нейроны, не выходящие за пределы спинного и головного мозга, называются вставочными). Предназначение этих клеток заключается в обеспечении контакта между нейроцитами. Они расположены во всех слоях нервной системы.Эфферентные (двигательные, моторные). Данная категория нервных клеток отвечает за передачу химических импульсов к иннервируемым органам-исполнителям, обеспечивая их работоспособность и задавая их функциональное состояние.

Кроме этого в нервной системе функционально выделяют еще одну группу – тормозящие (отвечают за торможения возбуждения клеток) нервы. Такие клетки противодействуют распространению электрического потенциала.

Классификация нейронов

Нервные клетки разнообразны как таковые, поэтому нейроны можно классифицировать, отталкиваясь от разных их параметров и атрибутов, а именно:

  • Форма тела. В разных отделах мозга располагаются нейроциты разной формы сомы:
    • звездчатые;
    • веретеновидные;
    • пирамидные (клетки Беца).
  • По количеству отростков:
    • униполярные: имеют один отросток;
    • биполярные: на теле располагаются два отростка;
    • мультиполярные: на соме подобных клеток располагаются три или более отростков.
  • Контактные особенности поверхности нейрона:
    • аксо-соматический. В таком случае аксон контактирует с сомой соседней клетки нервной ткани;
    • аксо-дендритический. Данный тип контакта предполагает соединение аксона и дендрита;
    • аксо-аксональный. Аксон одного нейрона имеет связи с аксоном другой нервной клетки.

Виды нейронов

Для того чтоб осуществлять осознанные движения нужно, чтобы импульс, образовавшийся в двигательных извилинах головного мозга смог достичь необходимых мышц. Таким образом, выделяют следующие виды нейронов: центральный мотонейрон и таковой периферический.

Первый вид нервных клеток берет свое начало у передней центральной извилины, расположенной спереди от самой большой борозды мозга – борозды Роланда, а именно от пирамидных клеток Беца. Далее аксоны центрального нейрона углубляются в полушария и проходят сквозь внутреннюю капсулу мозга.

Периферические же двигательные нейроциты образованы двигательными нейронами передних рогов спинного мозга. Их аксоны достигают различных образований, таких как сплетения, спинномозговые нервные скопления, и, главное – мышц-исполнителей.

Развитие и рост нейронов

Нервная клетка берет свое начало от клетки-предшественницы. Развиваясь, первые начинают отрастать аксоны, дендриты дозревают несколько позже.

Под конец эволюции отростка нейроцита у сомы клетки образуется маленькое уплотнение неправильной формы. Такое образование называется конусом роста. В нем содержатся митохондрии, нейрофиламенты и трубочки.

Постепенно созревают рецепторные системы клетки и расширяются синаптические области нейроцита.

Проводящие пути

Нервная система имеет свои сферы влияния по всему организму. С помощью проводящих волокон осуществляется нервная регуляция систем, органов и тканей. Мозг, благодаря широкой системе проводящих путей, полностью контролирует анатомическое и функциональное состояние всякой структуры организма.

Почки, печень, желудок, мышцы и другие – все это инспектирует головной мозг, тщательно и кропотливо координируя и регулируя каждый миллиметр ткани. А в случае сбоя – корректирует и подбирает подходящую модель поведения.

Таким образом, благодаря проводящим путям организм человека отличается автономностью, саморегуляцией и адаптивностью к внешней среде.

Проводящие пути головного мозга

Проводящий путь – это скопление нервных клеток, функция которых заключается в обмене информации между различными участками тела.

  • Ассоциативные нервные волокна. Эти клетки соединяют между собой различные нервные центры, что располагаются в одном полушарии.
  • Комиссуриальные волокна. Эта группа отвечает за обмен информацией между аналогичными центрами головного мозга.
  • Проекционные нервные волокна. Данная категория волокон сочленяет головной мозг со спинным.
  • Экстероцептивные пути. Они несут электрические импульсы от кожи и других органов чувств к спинному мозгу.
  • Проприоцептивные. Такая группа путей проводят сигналы от сухожилий, мышц, связок и суставов.
  • Интероцептивные проводящие пути. Волокна этого тракта берут начало из внутренних органов, сосудов и кишечных брыжеек.

Взаимодействие с нейромедиаторами

Нейроны разного местонахождения общаются между собой с помощью электрических импульсов химической природы. Так, что же лежит в основе их образования? Существуют так называемые нейромедиаторы (нейротрансмиттеры) – сложные химические соединения.

На поверхности аксона располагается нервный синапс – контактная поверхность. С одной стороны находится пресинаптическая щель, а с другой – постсинаптическая. Между ними находится щель – это и есть синапс.

На пресинаптической части рецептора располагаются мешочки (везикулы), содержащие определенное количество нейромедиаторов (квант).

[attention type=green]

Когда импульс подходит к первой части синапса, инициируется сложный биохимический каскадный механизм, в результате которого мешочки с медиаторами вскрываются, и кванты веществ-посредников плавно вытекают в щель.

[/attention]

На этом этапе импульс исчезает, и появляется вновь только тогда, когда нейромедиаторы достигают постсинаптической щели.

Тогда снова активируются биохимические процессы с открытиями ворот для медиаторов и те, действуя на мельчайшие рецепторы, преобразуются в электрический импульс, идущий далее в глубины нервных волокон.

Между тем выделяют разные группы этих самых нейромедиаторов, а именно:

  • Тормозные нейромедиаторы – группа веществ, осуществляющие тормозное действие на возбуждение. К ним относят:
    • гамма-аминомасляную кислоту (ГАМК);
    • глицин.
  • Возбуждающие медиаторы:
    • ацетилхолин;
    • дофамин;
    • серотонин;
    • норадреналин;
    • адреналин.

Восстанавливаются ли нервные клетки

Долгое время считалось, что нейроны не способны к делению.

Однако такое утверждение, согласно современным исследованиям, оказалось ложным: в некоторых отделах мозга происходит процесс нейрогенеза предшественников нейроцитов.

Кроме того, мозговая ткань обладает выдающимися способностями к нейропластичности. Известно множество случаев, когда здоровый участок мозга берет на себя функцию поврежденного.

Многие специалисты в области нейрофизиологии задавались вопросом о том, как восстановить нейроны головного мозга.

Свежими исследованиями американских ученых выяснилось: для своевременной и правильной регенерации нейроцитов не нужно употреблять дорогие препараты.

Для этого необходимо лишь составить верный режим сна и правильно питаться с включением в диету витаминов группы В и низкокалорийной пищи.

В случае если произойдет нарушение нейронных связей головного мозга, те способны восстановиться. Однако существуют серьезные патологии нервных связей и путей, такие как болезнь двигательного нейрона. Тогда необходимо обращаться к специализированной клинической помощи, где врачи-неврологи смогут выяснить причину патологии и составить правильное лечение.

Люди, ранее употреблявшие или употребляющие алкоголь, часто задают вопрос о том, как восстановить нейроны головного мозга после алкоголя. Специалист бы ответил, что для этого необходимо систематично работать над своим здоровьем.

[attention type=yellow]

В комплекс мероприятий входит сбалансированное питание, регулярное занятие спортом, умственная деятельность, прогулки и путешествия.

[/attention]

Доказано: нейронные связи головного мозга развиваются через изучение и созерцание категорически новой для человека информации.

В условиях перенасыщения лишней информацией, существования рынка фаст-фуда и сидящего образа жизни мозг качественно поддаётся различным повреждениям. Атеросклероз, тромботические образование на сосудах, хронические стрессы, инфекции, – все это – прямая дорога к засорению мозга.

Несмотря на это существуют лекарства, восстанавливающие клетки головного мозга. Основная и популярная группа – ноотропы.

Препараты данной категории стимулируют обмен веществ в нейроцитах, увеличивают стойкость к кислородной недостаточности и оказывают позитивный эффект на различные психические процессы (память, внимание, мышление).

Кроме ноотропов, фармацевтический рынок предлагает препараты, содержащие никотиновую кислоту, укрепляющие стенки сосудов средства и другие. Следует помнить, что восстановление нейронных связей головного мозга при приеме различных препаратов является долгим процессом.

Влияние алкоголя на головной мозг

Алкоголь оказывает негативное влияние на все органы и системы, а особенно – на головной мозг. Этиловый спирт легко проникает сквозь защитные барьеры мозга.

Метаболит алкоголя – ацетальдегид – серьезная угроза для нейронов: алькогольдегидрогеназа (фермент, обрабатывающий алкоголь в печени) в процессе переработки организмом тянет на себя больше количество жидкости, включая воду из мозга.

Таким образом, алкогольные соединения просто сушат мозг, вытаскивая из него воду, в результате чего структуры мозга атрофируются, и происходит отмирание клеток.

[attention type=red]

В случае одноразового употребления алкоголя такие процессы обратимы, чего нельзя утверждать о хроническом приеме спиртного, когда, кроме органических изменений, формируются устойчивые патохарактерологические черты алкоголика. Больше подробной информации о том, как происходит «Влияние алкоголя на мозг».

[/attention] Не нашли подходящий ответ?
Найдите врача и задайте ему вопрос!

Источник: https://sortmozg.com/structure/nejrony-golovnogo-mozga

Нервная ткань

Дифферентные нейроны

Часть вторая – клеточный состав нервной ткани, характеристика нервных и глиальных клеток.

Клеточный состав нервной ткани

Нейроны, или нейроциты, — специализированные клетки нервной системы, ответственные за получение, обработку и передачу сигнала (на: другие нейроны, мышечные или секреторные клетки).

Нейрон является морфологически и функционально самостоятельной единицей, но с помощью своих отростков осуществляет синаптический контакт с другими нейронами, образуя рефлекторные дуги — звенья цепи, из которой построена нервная система.

В зависимости от функции в рефлекторной дуге различают три типа нейронов:

  • афферентные
  • ассоциативные
  • эфферентные

Афферентные (или рецепторные, чувствительные) нейроны воспринимают импульс, эфферентные (или двигательные) передают его на ткани рабочих органов, побуждая их к действию, а ассоциативные (или вставочные) осуществляют связь между нейронами.

Подавляющее большинство нейронов (99,9%) – ассоциативные.

Нейроны отличаются большим разнообразием форм и размеров. Например, диаметр тел клеток-зерен коры мозжечка 4—6 мкм, а гигантских пирамидных нейронов двигательной зоны коры большого мозга — 130—150 мкм. Нейроны состоят из тела (или перикариона) и отростков: одного аксона и различного числа ветвящихся дендритов. По количеству отростков различают три типа нейронов:

  • биполярные,
  • мультиполярные (большинство) и
  • униполярные нейроны.

Униполярные нейроны имеют только аксон (у высших животных и человека обычно не встречаются). Биполярные – имеют аксон и один дендрит. Мультиполярные нейроны (подавляющее большинство нейронов) имеют один аксон и много дендритов.

Разновидностью биполярных нейронов является псевдо-униполярный нейрон, от тела которого отходит один общий вырост — отросток, разделяющийся затем на дендрит и аксон. Псевдоуниполярные нейроны присутствуют в спинальных ганглиях, биполярные — в органах чувств. Большинство нейронов – мультиполярные. Их формы чрезвычайно разнообразны.

Аксон и его коллатерали оканчиваются, разветвляясь на несколько веточек, называемых телодендронами, последние заканчиваются терминальными утолщениями.

Трехмерная область, в которой ветвятся дендриты одного нейрона, называется дендритным полем нейрона.

Дендриты представляют собой истинные выпячивания тела клетки. Они содержат те же органеллы, что и тело клетки: глыбки хроматофильной субстанции (т.е. гранулярной эндоплазматической сети и полисом), митохондрии, большое количество нейротубул (или микротрубочек) и нейрофиламентов. За счет дендритов рецепторная поверхность нейрона увеличивается в 1000 и более раз.

Аксон — это отросток, по которому импульс передается от тела клетки. Он содержит митохондрии, нейротубулы и нейрофиламенты, а также гладкую эндоплазматическую сеть.

Подавляющее большинство нейронов человека содержит одно округлое светлое ядро, расположенное в центре клетки. Двуядерные и тем более многоядерные нейроны встречаются крайне редко.

Плазмолемма нейрона является возбудимой мембраной, т.е. обладает способностью генерировать и проводить импульс.

Ее интегральными белками являются белки, функционирующие как ионно-избирательные каналы, и рецепторные белки, вызывающие реакции нейронов на специфические стимулы. В нейроне мембранный потенциал покоя равен —60 —70 мВ.

Потенциал покоя создается за счет выведения Na+ из клетки. Большинство Na+- и К+-каналов при этом закрыты. Переход каналов из закрытого состояния в открытое регулируется мембранным потенциалом.

[attention type=green]

В результате поступления возбуждающего импульса на плазмолемме клетки происходит частичная деполяризация. Когда она достигает критического (порогового) уровня, натриевые каналы открываются, позволяя ионам Na+ войти в клетку.

[/attention]

Деполяризация усиливается, и при этом открывается еще больше натриевых каналов. Калиевые каналы также открываются, но медленнее и на более продолжительный срок, что позволяет К+ выйти из клетки и восстановить потенциал до прежнего уровня. Через 1—2 мс (т.н.

рефрактерный период) каналы возвращаются в нормальное состояние, и мембрана может вновь отвечать на стимулы.

Итак, распространение потенциала действия обусловлено вхождением в нейрон ионов Na+, которые могут деполяризовать соседний участок плазмолеммы, что в свою очередь создает потенциал действия на новом месте.

При окрашивании нервной ткани анилиновыми красителями в цитоплазме нейронов выявляется хроматофильная субстанция в виде базофильных глыбок и зерен различных размеров и форм (другие названия хроматофильной субстанции – тигроид, тельца Ниссля).

Базофильные глыбки локализуются в перикарионах и дендритах нейронов, но никогда не обнаруживаются в аксонах и их конусовидных основаниях — аксональных холмиках. Базофилия глыбок объясняется высоким содержанием рибонуклеопротеидов.

Каждая глыбка хроматофильной субстанции состоит из цистерн гранулярной эндоплазматической сети, свободных рибосом и полисом. Для поддержания целостности нейронов и выполнения ими функций нейронам требуется огромное количество белков.

Для аксонов, не имеющих органелл белкового синтеза, характерен постоянный ток цитоплазмы от перикариона к терминалям со скоростью 1—3 мм в сутки.

Возрастные изменения нейронов сопровождаются накоплением липофусцина, разрушением крист митохондрий. Липофусцин — «пигмент старения» — желто-бурого цвета липопротеидной природы, представляющий собой остаточные тельца (т.е. телолизосомы) с продуктами непереваренных структур.

Из элементов цитоскелета в цитоплазме нейронов присутствуют нейрофиламенты и нейротубулы.

Пучки нейрофиламентов на препаратах, импрегнированных серебром, видны в виде нитей — нейрофибрилл. Нейрофибриллы образуют сеть в теле нейрона, а в отростках расположены параллельно.

Нейротубулы и нейрофиламенты участвуют в поддержании формы клеток, росте отростков и аксональном транспорте.

[attention type=yellow]

Аксональный (точнее аксоплазматический) транспорт — это перемещение веществ от тела в отростки и от отростков в тело нейрона. Он направляется нейротубулами, а в транспорте участвуют белки — кинезин и динеин.

[/attention]

Транспорт веществ от тела клетки в отростки называется прямым, или антероградным, транспорт веществ от отростков к телу — обратным, или ретроградным. Аксональный транспорт представлен двумя главными компонентами: быстрым компонентом (400—2000 мм в сутки) и медленным (1—2 мм в сутки).

Обе транспортные системы присутствуют как в аксонах, так и в дендритах.

Антероградная быстрая система проводит мембранные структуры, включая компоненты мембраны, митохондрии, пузырьки, содержащие пептиды, предшественники нейромедиаторов и другие белки. Ретроградная быстрая система проводит использованные материалы для деградации в лизосомах, распределения и рециркуляции и, возможно, факторы роста нервов.

Нейротубулы — органеллы, ответственные за быстрый транспорт, который называется также нейротубулозависимым. Каждая нейротубула содержит несколько путей, вдоль которых движутся различные частички.

АТФ и ионы Са2+ обеспечивают эти движения. На одной микротубуле пузырьки могут обгонять другие пузырьки, движущиеся в том же направлении.

Два пузырька могут двигаться в противоположных направлениях одновременно по различным путям одной нейротубулы.

Медленный транспорт — это антероградная система, проводящая белки и другие вещества для обновления и поддержания аксоплазмы зрелых нейронов и обеспечения аксоплазмой роста аксонов и дендритов при развитии и регенерации.

Отдельной разновидностью нейронов являются секреторные нейроны. Способность синтезировать и секретировать биологически активные вещества, в частности нейромедиаторы, свойственна всем нейроцитам.

[attention type=red]

Однако существуют нейроциты, специализированные преимущественно для выполнения этой функции, — секреторные нейроны, например клетки нейросекреторных ядер гипоталамической области головного мозга.

[/attention]

В цитоплазме таких нейронов и в их аксонах находятся различной величины гранулы нейросекрета, содержащие белок, а в некоторых случаях липиды и полисахариды. Гранулы нейросекрета выводятся непосредственно в кровь (например, с помощью т.н.

аксо-вазальных синапсов) или же в мозговую жидкость. Нейросекреты выполняют роль нейрорегуляторов, участвуя во взаимодействии нервной и гуморальной систем интеграции.

Нейроглия

Нейроны — это высокоспециализированные клетки, существующие и функционирующие в строго определенной среде. Такую среду им обеспечивает нейроглия. Нейроглия выполняет следующие функции: опорную, трофическую, разграничительную, поддержание постоянства среды вокруг нейронов, защитную, секреторную. Различают глию центральной и периферической нервной системы.

Клетки глии центральной нервной системы делятся на макроглию и микроглию.

Макроглия

Макроглия развивается из глиобластов нервной трубки и включает: эпендимоциты, астроциты и олигодендроглиоциты.

Эпендимоциты выстилают желудочки головного мозга и центральный канал спинного мозга. Эти клетки цилиндрической формы. Они образуют слой типа эпителия, носящий название эпендимы.

Между соседними клетками эпендимы имеются щелевидные соединения и пояски сцепления, но плотные соединения отсутствуют, так что цереброспинальная жидкость может проникать между эпендимоцитами в нервную ткань. Большинство эпендимоцитов имеют подвижные реснички, вызывающие ток цереброспинальной жидкости.

Базальная поверхность большинства эпендимоцитов ровная, но некоторые клетки имеют длинный отросток, идущий глубоко в нервную ткань. Такие клетки называются таницитами. Они многочисленны в дне III желудочка.

Считается, что эти клетки передают информацию о составе цереброспинальной жидкости на первичную капиллярную сеть воротной системы гипофиза. Эпендимный эпителий сосудистых сплетений желудочков продуцирует цереброспинальную жидкость (ликвор).

Астроциты — клетки отростчатой формы, бедные органеллами. Они выполняют в основном опорную и трофическую функции. Различают два типа астроцитов – протоплазматические и волокнистые. Протоплазматические астроциты локализуются в сером веществе центральной нервной системы, а волокнистые астроциты – преимущественно в белом веществе.

Протоплазматические астроциты характеризуются короткими сильно ветвящимися отростками и светлым сферическим ядром.

Отростки астроцитов тянутся к базальным мембранам капилляров, к телам и дендритам нейронов, окружая синапсы и отделяя (изолируя) их друг от друга, а также к мягкой мозговой оболочке, образуя пиоглиальную мембрану, граничащую с субарахноидальным пространством. Подходя к капиллярам, их отростки образуют расширенные «ножки», полностью окружающие сосуд.

Астроциты накапливают и передают вещества от капилляров к нейронам, захватывают избыток экстрацеллюлярного калия и других веществ, таких как нейромедиаторы, из экстрацеллюлярного пространства после интенсивной нейрональной активности.

Олигодендроциты – имеют более мелкие по сравнению с астроцитами и более интенсивно окрашивающиеся ядра. Их отростки немногочисленны. Олигодендроглиоциты присутствуют как в сером, так и в белом веществе. В сером веществе они локализуются вблизи перикарионов.

[attention type=green]

В белом веществе их отростки образуют миелиновый слой в миелиновых нервных волокнах, причем, в противоположность аналогичным клеткам периферической нервной системы – нейролеммоцитам, один олигодендроглиоцит может участвовать в миелинизации сразу нескольких аксонов.

[/attention]

Микроглия

Микроглия представляет собой фагоцитирующие клетки, относящиеся к системе мононуклеарных фагоцитов и происходящие из стволовой кроветворной клетки (возможно, из премоноцитов красного костного мозга). Функция микроглии — защита от инфекции и повреждения, и удаление продуктов разрушения нервной ткани. Клетки микроглии характеризуются небольшими размерами, телами продолговатой формы.

Их короткие отростки имеют на своей поверхности вторичные и третичные ответвления, что придает клеткам «колючий» вид. Описанная морфология характерна для типичной (ветвистой, или покоящейся) микроглии полностью сформированной центральной нервной системы. Она обладает слабой фагоцитарной активностью. Ветвистая микроглия встречается как в сером, так и в белом веществе центральной нервной системы.

В развивающемся мозгу млекопитающих обнаруживается временная форма микроглии — амебоидная микроглия. Клетки амебоидной микроглии формируют выросты – филоподии и складки плазмолеммы. В их цитоплазме присутствуют многочисленные фаголизосомы и пластинчатые тельца.

Амебоидные микроглиальные тельца отличаются высокой активностью лизосомальных ферментов.

Активно фагоцитирующая амебоидная микроглия необходима в раннем постнатальном периоде, когда гематоэнцефалический барьер еще не вполне развит и вещества из крови легко попадают в центральную нервную систему.

Считают также, что она способствует удалению обломков клеток, появляющихся в результате запрограммированной гибели избыточных нейронов и их отростков в процессе дифференцировки нервной системы. Полагают, что, созревая, амебоидные микроглиальные клетки превращаются в ветвистую микроглию.

Реактивная микроглия появляется после травмы в любой области мозга. Она не имеет ветвящихся отростков, как покоящаяся микроглия, не имеет псевдоподий и филоподий, как амебоидная микроглия.

[attention type=yellow]

В цитоплазме клеток реактивной микроглии присутствуют плотные тельца, липидные включения, лизосомы.

[/attention]

Есть данные о том, что реактивная микроглия формируется вследствие активации покоящейся микроглии при травмах центральной нервной системы.

Рассмотренные выше глиальные элементы относились к центральной нервной системе.

Глия периферической нервной системы в отличие от макроглии центральной нервной системы происходит из нервного гребня. К периферической нейроглии относятся: нейролеммоциты (или шванновские клетки) и глиоциты ганглиев (или мантийные глиоциты).

Нейролеммоциты Шванна формируют оболочки отростков нервных клеток в нервных волокнах периферической нервной системы. Мантийные глиоциты ганглиев окружают тела нейронов в нервных узлах и участвуют в обмене веществ этих нейронов.

Некоторые термины из практической медицины:

  • нейрокриния, нейросекреция — продукция гормонов нервной тканью (секреторными нейронами), напр. ядрами межуточного мозга;
  • нейроксантома — локальное дистрофическое изменение нервной ткани, характеризующееся отложением холестерина в глиоцитах; наблюдается при болезни Хенда-Шюллера-Крисчена;
  • нейрон формальный — математическая модель нейрона, отображающая его свойство генерировать нервный импульс лишь при внешних воздействиях, не меньших некоторой величины (порога); Формальный нейрон послужил основой для создания различных вычислительных и логических кибернетических схем;

 

Источник: https://morphology.dp.ua/_mp3/neural2.php

Афферентные и эфферентные нервные проводники и их роль в психологии

Дифферентные нейроны

Определение 1

Нейрон – это электрически возбудимая клетка, функциональная единица нервной системы.

Каждый нейрон имеет клеточное тело, дендриты и аксон. Нейроны делятся на три типа:

  • афферентные нейроны,
  • эфферентные нейроны
  • интернейроны.

Сенсорная информация передается от периферии тела к главному органу – мозгу.

Сенсорная информация включает в себя нервные импульсы (то есть вещи, которые люди слышат, трогают, видят, ощущают на вкус и чувствуют их запах), которые передаются от органов чувств.

Афферентные нейроны также называют сенсорными нейронами, и именно эти специализированные клетки передают нервные импульсы от тела непосредственно к центральной нервной системе.

Физические стимулы, такие как звук или свет, активируют афферентные нейроны, превращая модальности в нервные импульсы. Они делают это, используя сенсорные рецепторы, находящиеся в их клеточных мембранах. Основные клеточные тела афферентных нейронов расположены вблизи головного и спинного мозга, которые в совокупности образуют центральную нервную систему.

  • Курсовая работа 490 руб.
  • Реферат 250 руб.
  • Контрольная работа 210 руб.

Клетки эфферентных нейронов расположены в центральной нервной системе и называются моторными нейронами. Получив данные от разных нейронов, включая афферентные нейроны и интернейроны, эфферентные нейроны принимают эти сигналы от центральной нервной системы и передают нервные импульсы периферической нервной системе, мышцам и железам, чтобы инициировать реакцию на стимул.

Как они работают вместе и чем отличаются

Афферентные нейроны обычно имеют два аксона, которые передают электрохимические сигналы в позвоночный столб или мозг. Оказавшись там, сигнал проходит через сеть интернейронов и через эфферентный нейрон. Афферентно-эфферентные пары нейронов, которые проходят через позвоночник, управляют рефлексами (такими, как реакция коленного рефлекса).

Афферентные нейроны предназначены для реагирования на различные раздражители. Например, афферентный нейрон, предназначенный для реакции на тепло, обнаруживает избыточное тепло и посылает импульс через центральную нервную систему. Затем эфферентный нейрон заставляет мышцы сокращаться, чтобы отвести тело от жары. Кожа имеет сенсорные рецепторы для тепла, холода, удовольствия, боли и давления.

Афферентные нейроны имеют круглые и гладкие клеточные тела, в то время как эфферентные нейроны имеют спутниковые тела.

Афферентные нейроны обнаруживаются в периферической нервной системе, а эфферентные нейроны располагаются в центральной нервной системе.

Аксоны в афферентных нейронах движутся от ганглиев (скопление нервных клеток, в которых находятся афферентные и эфферентные нейроны) к спинному мозгу. Длинный аксон фактически связан с эфферентным нейроном.

Афферентные нейроны имеют один длинный миелинизированный дендрит, тогда как эфферентные нейроны имеют более короткие дендриты.

Дендрит в афферентном нейроне – это то, что отвечает за передачу нервных импульсов от рецепторов к телу клетки, в то время как в эфферентном нейроне импульсы проходят через дендрит и выходят через нервно-мышечное соединение, которое образуется между эффекторами и аксоном.

Значимость нейронов

Пациенты с травмой спинного мозга имеют дефицит двигательной и сенсорной систем. Что именно это означает с биологической точки зрения?

Центральная нервная система включает головной и спинной мозг. Периферическая нервная система состоит из сети нейронов, которая охватывает органы, мышцы и тело. Нейроны в обеих системах работают вместе, чтобы помочь нам думать, выживать и воздействовать на мир вокруг нас.

Нервная система работает по принципу ввода и вывода, восприятия и (пере) действия. Живые существа способны чувствовать, что происходит в их окружении, и что-то делать в ответ на это. Давайте рассмотрим простой пример: если машина собирается ударить вас, вы прыгаете с дороги.

[attention type=red]

Это простое действие сложнее, чем кажется. Глаза увидели машину, мозг понял, что это опасно, и велел ногам соскочить с дороги. Другой пример: если пламя свечи обжигает палец, человек немедленно оттягиваете руку назад. То есть человек сначала почувствовал, а затем начал действовать.

[/attention]

Важно знать, что нервная система связана с деятельностью всего организма. Например, он всегда получает информацию о точном положении конечности, не глядя на нее, сканируя сгибание и растяжение суставов и мышц.

Это чувство важно для движения тела, например, во время спорта, и иногда его называют шестым чувством.

Основываясь на этой постоянной обратной связи, нервная система может контролировать деятельность организма, либо добровольно (движение мышц), либо невольно (сердцебиение).

Таким образом, если двигательные (эфферентные) волокна разрушены, человек не сможет поднять ногу, потому что команда не будет передаваться от мозга к мышцам в ноге.

Если затронуты сенсорные (афферентные) волокна, органы чувств не будут уведомлять мозг, например, если кто-то ударит вас по ноге.

На самом деле, после повреждения спинного мозга в основном повреждается комбинация эфферентных и афферентных волокон.

Замечание 1

Как описано ранее, нервная система может рассматриваться как «система замкнутого цикла» ощущений, решений и реакций. В зависимости от сложности реакции и задействованных мышечных групп (частей тела), участвуют разные уровни центральной нервной системы.

В некоторых случаях замкнутый цикл не требует вмешательства более высоких уровней, таких как мозг. Афферентные волокна также напрямую связаны с эфферентными волокнами.

Коленный рефлекс, также известный как рефлекс коленного рефлекса, является хорошим примером.

[attention type=green]

Этот простой тест, который многие проходили во время медицинского осмотра, выявляет рефлекс, необходимый для поддержания осанки и равновесия, позволяя человеку ходить, не думая о каждом отдельном шаге.

[/attention]

Когда реакция является более сложной, требуется вмешательство более высоких уровней центральной нервной системы. Например, выход из машины: глаз обнаруживает автомобиль и передает эту информацию в мозг. Затем мозг вырабатывает соответствующий ответ (выпрыгивая в сторону) и посылает соответствующее двигательное действие мышцам.

Подводя итог, можно сказать, что то, в какой степени повреждены афферентные и эфферентные волокна после травмы спинного мозга, определяет, есть ли у пациентов дефицит ощущения и удержания позы или командования мышцами.

Источник: https://spravochnick.ru/psihologiya/afferentnye_i_efferentnye_nervnye_provodniki_i_ih_rol_v_psihologii/

Будь здоров
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: