Диполь вода

Строение молекул воды, их связи и свойства. Влияние внешних физических воздействий на молекулы воды?

Диполь вода

В данной статье поговорим про строение молекул воды, их связи и свойства.

Забежав немного вперёд напишу:

Задача, выполняемая Ячейкой Мэйера — «лёгкое» разложение молекул воды под действием электрического тока, сопровождаемого электромагнитным излучением.

Для её решения разберёмся, что же вода из себя представляет? Каково строение молекул воды? Что известно о молекулах воды и их связях? В статье, я использовал различные публикации, имеющиеся в достаточном количестве в Интернете, но они размножены в большом количестве, поэтому, кто их автор, мне не понятно и ссылаться на источник с моей стороны глупо. Мало того, эти публикации «запутаны» до безобразия, что затрудняет восприятие, и значительно увеличивает время изучения. Анализируя статьи, я извлёк то, что может направить Вас на понимание того, с чем мы будем иметь дело в процессе добычи дешёвой энергии, а точнее в процессе разрыва молекул воды на составляющие – водород и кислород.

Итак, рассмотрим наиболее весомые понятия о строении молекул воды!

Вода — вещество, основной структурной единицей которого является молекула H2O, состоящая из одного атома кислорода и двух атомов водорода.

Молекула воды имеет структуру как бы равнобедренного треугольника: в вершине этого треугольника расположен атом кислорода, а в основании его — два атома водорода.

Угол при вершине составляет 104°27, а длина стороны — 0,096 нм. Эти параметры относятся к гипотетическому равновесному состоянию молекулы воды без ее колебаний и вращений.

Геометрия молекулы воды и её электронные орбиты изображены на рисунке.

Молекула воды представляет собой диполь, содержащий положительный и отрицательный заряды на полюсах.

[attention type=yellow]

Если «свободную» молекулу воды — не связанную с другими молекулами, поместить в электрическое поле, то она «повернётся» отрицательными полюсами в сторону положительной пластины электрического поля, а положительными полюсами в сторону отрицательной пластины. Именно этот процесс изображён на рисунке 1, позиция — 3В, поясняющем работу Ячейки Мэйера в статье «Вода вместо бензина».

[/attention]

Если соединить прямыми линиями эпицентры положительных и отрицательных зарядов получится объемная геометрическая фигура — правильный тетраэдр. Таково строение самой молекулы воды.

Благодаря наличию водородных связей каждая молекула воды образует водородную связь с 4-мя соседними молекулами, образуя ажурный сетчатый каркас в молекуле льда. Именно такое упорядоченное состояние молекул воды можно назвать «структурой».

Каждая молекула может одновременно образовывать четыре водородные связи с другими молекулами под строго определенными углами, равными 109°28′, направленных к вершинам тетраэдра, которые не позволяют при замерзании создавать плотную структуру.

Когда лёд плавится, его тетрагональная структура разрушается и образуется смесь полимеров, состоящая из три-, тетра-, пента-, и гексамеров воды и свободных молекул воды.

В жидком состоянии вода – неупорядоченная жидкость. Эти водородные связи — спонтанные, короткоживущие, быстро рвутся и образуются вновь.

Группируясь, тетраэдры молекул воды образуют разнообразные пространственные и плоскостные структуры.

И из всего многообразия структур в природе базовой является гексагональная (шестигранная) структура, когда шесть молекул воды (тетраэдров) объединяются в кольцо.

Такой тип структуры характерен для льда, снега и талой воды, которую из-за наличия такой структуры, называют «Структурированной водой». О полезных свойствах структурированной воды пишут много, но не это тема нашей статьи.

[attention type=red]

Логично будет, что структурированная вода — образующая гексагональные структуры является наихудшим вариантом структуры воды, которую возможно использовать для разложения на водород и кислород.

[/attention]

Поясню почему: Молекулы воды, группируясь по шесть в гексамер, имеют электронейтральный состав — у гексамеров нет положительных и отрицательных полюсов. Если поместить гексамер структурированной воды в электрическое поле, то он не будет никак на него реагировать.

Поэтому логически можно заключить, что необходимо, чтобы в воде было как можно меньше организованных структур. На самом деле, всё наоборот, гексамер — это не завершённая структура, есть ещё более интересное понятие — кластер.

Структуры объединённых молекул воды называют кластерами, а отдельные молекулы воды — квантами. Кластер — объёмное соединение молекул воды, в том числе гексамеров, у которого имеются и положительные и отрицательные полюса.

В дистиллированной воде кластеры практически электронейтральны, потому что в результате испарения, произошло разрушение кластеров, а в результате конденсации, сильные связи между молекулами воды не появились. Однако, их электропроводность можно изменить.

Если дистиллированную воду помешать магнитной мешалкой, связи между элементами кластеров будут частично восстановлены и электропроводность воды изменится. Другими словами, дистиллированная вода – это вода, у которой минимальное количество связей между молекулами.

В ней диполи молекул находятся в разориентированном состоянии, поэтому диэлектрическая проницаемость дистиллированной воды очень высока, и она плохо проводит электрический ток.

В то же время, для повышения управляемости кластерами воды, в неё добавляют кислоты или щёлочи, которые участвуя в молекулярных связях, не позволяют молекулам воды образовывать гексагональные структуры, образуя при этом электролиты. Дистиллированная вода является противоположностью структурированной воде, в которой связей между молекулами воды в кластеры огромное количество.

На моём сайте имеются, и будут появляться статьи, которые, на первый взгляд «отдельные» и не имеют никакого отношения к другим статьям. На самом деле, большинство статей сайта имеет взаимосвязь в одно целое.

В данном случае, описывая свойства дистиллированной воды, я использую Дипольную теорию электрического тока, это альтернативное понятие об электрическом токе, которое подтверждается и наукой и практикой лучше, чем классическое понятие.

При воздействии энергии источника электрического тока, все диполи атомов воды (как проводника) поворачиваются, ориентируясь своими одноимёнными полюсами в одном направлении.

Если молекулы воды до появления внешнего электрического поля создавали кластерную (взаимно ориентированную) структуру, то для ориентации во внешнем электрическом поле потребуется минимальное количество энергии источника электрического тока.

Если же структура была не организованной (как у дистиллированной воды), то потребуется большое количество энергии.

[attention type=green]

Заметьте, «в народе» бытует мнение, что дистиллированная вода и талая вода должны обладать одинаковыми электропроводными свойствами, ведь что у одной, что у другой отсутствуют химические примеси (как правило – соли), их химический состав одинаков, да и строение молекул воды что в талой воде, что в дистиллированной одинаково.

[/attention]

На самом деле всё выглядит наоборот, отсутствие примесей совсем не говорит о свойствах электропроводности воды. Не понимая этого, некоторые люди, «убивают» аккумуляторные батареи ещё на этапе их заправки электролитом, подменяя дистиллированную воду на талую, или просто очищенную через угольный фильтр.

Как правило, заправленный аккумулятор, который куплен на автомобильном рынке служит меньше, чем тот, который вы купили сухозаряженным и разбавив серную кислоту дистиллированной водой, заправили его сами.

Это лишь потому, что «готовый» электролит, или заправленный аккумулятор – это в наше время средство заработка, а чтобы определить какая вода использовалась, надо провести дорогую экспертизу, никто этим не заморачивается. Торгашу не важно, сколько прослужит аккумулятор на твоём авто, а Вам тоже, возиться с кислотой не очень хочется.

Зато, я Вас уверяю, аккумулятор, над которым попотеете Вы, при минусовых температурах будет намного бодрее, чем заправленный из уже готового бутылочного электролита.

Продолжим!

В воде кластеры периодически разрушаются и образуются снова. Время перескока составляет 10-12 секунд.

Так как, строение молекулы воды несимметрично, то центры тяжести положительных и отрицательных зарядов ее не совпадают. Молекулы имеют два полюса — положительный и отрицательный, создающие, как магнит, молекулярные силовые поля.

Такие молекулы называют полярными, или диполями, а количественную характеристику полярности определяют электрическим моментом диполя, выражаемым произведением расстояния l между электрическими центрами тяжести положительных и отрицательных зарядов молекулы на заряд e в абсолютных электростатических единицах: p = l·e

Для воды дипольный момент очень высокий: p = 6,13·10-29 Кл·м.

Кластеры воды на границах раздела фаз (жидкость-воздух) выстраиваются в определенном порядке, при этом все кластеры колеблются с одинаковой частотой, приобретая одну общую частоту.

[attention type=yellow]

При таком движении кластеров, учитывая, что входящие в кластер молекулы воды являются полярными, то есть, имеют большой дипольный момент, следует ожидать появления электромагнитного излучения.

[/attention]

Это излучение отличается от излучения свободных диполей, так как диполи являются связанными и колеблются совместно в кластерной структуре.

Частота колебаний кластеров воды и соответственно, частота электромагнитных колебаний может быть определена по следующей формуле:

где a — поверхностное натяжение воды при заданной температуре; М
— масса кластера.

где V — объем кластера.

Объем кластера определяется с учетом размеров фрактальной замкнутой структуры кластера или по аналогии с размерами домена белка.
При комнатной температуре 18°С частота колебаний кластера f равна 6,79·109 Гц, то есть длина волны в свободном пространстве должна составлять λ = 14,18 мм.

Но что, же будет происходить при воздействии на воду внешнего электромагнитного излучения? Поскольку вода является самоорганизованной структурой и содержит как упорядоченные в кластеры элементы, так и свободные молекулы, то при воздействии внешнего электромагнитного излучения будет происходить следующее. При сближении молекул воды (расстояние изменяется от R0 до R1) энергия взаимодействия изменяется на большую величину, чем при их взаимном удалении (расстояние изменяется от R0 до R2).

Но, поскольку молекулы воды имеют большой дипольный момент, то в случае внешнего электромагнитного поля, они будут совершать колебательные движения (например, от R1 до R2). При этом в силу приведенной зависимости приложенное электромагнитное поле будет больше способствовать притяжению молекул и тем самым организованности системы в целом, т.е. образованию гексагональной структуры.

При наличии же примесей в водной среде, они покрываются гидратной оболочкой таким образом, что общая энергия системы стремится принять минимальное значение.

И если общий дипольный момент гексагональной структуры равен нулю, то в присутствие примесей гексагональная структура вблизи них нарушается таким образом, чтобы система приняла минимальное значение, в ряде случаев шестиугольники преобразуются в пятиугольники, и гидратная оболочка имеет форму близкую к шару. Примеси (например, ионы Na+) могут стабилизировать структуру, делать ее более устойчивой к разрушению.

Самоорганизованная система воды при воздействии электромагнитного излучения не будет перемещаться как единое целое, но каждый элемент гексагональной, а в случае примесей локально и другого вида, структуры будет смещаться, т.е. будет происходить искажение геометрии структуры, т.

е. возникать напряжения. Такое свойство воды очень напоминает полимеры. Но полимерные структуры обладают большими временами релаксации, которые составляют не 10-11–10-12 с, а минуты и больше.

[attention type=red]

Поэтому энергия квантов электромагнитного излучения, переходя во внутреннюю энергию организованной водной структуры в результате её искажений, будет накапливаться ею, пока не достигнет энергии водородной связи, которая в 500–1000 раз больше энергии электромагнитного поля.

[/attention]

При достижении этой величины происходит разрыв водородной связи, и структура разрушается.

Это можно сравнить со снежной лавиной, когда происходит постепенное, медленное накапливание массы, а затем стремительный обвал.

В случае с водой происходит разрыв не только слабой связи между кластерами, но и более сильных связей — в строении молекул воды. В результате этого разрыва могут образовываться Н+, ОН–, и гидратированный электрон е–.

Голубой цвет чистой воды обязан наличию именно этих электронов, а не только рассеянию естественного света.

Заключение

Таким образом, при воздействии электромагнитного излучения с водой происходит накапливание энергии в кластерной структуре до некоторого критического значения, затем происходит разрыв связей как между кластерами, так и других, происходит лавинообразное освобождение энергии, которая может затем трансформироваться в другие типы.

В следующей статье«Разрыв молекул воды на водород и кислород. Закон Ома и Ячейка Мэйера», мы определимся с условиями разрыва молекул воды и разберёмся, как Закон Ома препятствует «нашим желаниям».

Источник: https://meanders.ru/meiers2.shtml

Молекула воды

Диполь вода

Все живые организмы на планете Земля состоят из воды. Этажидкость встречается везде и без нее жизнь невозможна. Большая ценность водыобусловлена уникальными свойствами жидкости и простым составом. Чтобыразобраться во всех особенностях, рекомендуется детально ознакомиться со структуроймолекулы воды.

Модель строения воды

Молекула воды включает два атома водорода (Н) и один атомкислорода (О). Элементы, из которых состоит жидкость, определяют всюфункциональность и особенности. Модель молекулы воды имеет форму треугольника.Вершину этой геометрической фигуры представляет крупный элемент кислорода, авнизу находятся небольшие атомы водорода.

Молекула воды обладает двумя положительными и двумяотрицательными полюсами зарядов. Отрицательные заряды формируются из-за излишкаэлектронной плотности у атомов кислорода, а положительные – из-за нехваткиэлектронной плотности у водорода.

Неравномерное распределение электрических зарядов создаетдиполе, где диполярный момент составляет 1,87 дебай. Вода обладает способностьюрастворять вещества, поскольку ее молекулы пытаются нейтрализоватьэлектрическое поле. Диполя приводят к тому, что на поверхности погруженных вжидкость веществ становятся слабее межатомные и межмолекулярные связи.

Вода отличает большой устойчивостью при растворении прочихсоединений. В обычных условиях из 1 млрд молекул только 2 распадаются, а протонпереходит в строение иона гидроксония (образуется при растворении кислот).

Вода не меняет свой состав при взаимодействии с другимивеществами и не влияет на структуру этих соединений. Такая жидкость считаетсяинертным растворителем, что особо важно для живых организмов.

Полезные веществапоступают к различным органам через водные растворы, поэтому важно, чтобы ихсостав и свойства оставались неизменными.

[attention type=green]

Вода сохраняет в себе память орастворенных в ней веществах и может применяться многократно.

[/attention]

Каковы особенности пространственной организации молекулыводы:

  • Соединение проводится противоположными зарядами;
  • Появляются межмолекулярные водородные связи, которые исправляют электронную неполноценность водорода с помощью дополнительной молекулы;
  • Вторая молекула фиксирует водород по отношению к кислороду;
  • Благодаря этому образуются четыре водородные связи, которые могут контактировать с 4 соседями;
  • Такая модель напоминает бабочку и имеет углы равные 109 градусам.

Атомы водорода соединяются с атомами кислорода и образуютмолекулу воды с ковалентной связью. Водородные соединения более сильные,поэтому, когда они разрываются, то молекулы присоединяются к другим веществам,способствуя их растворению.

Прочие химические элементы, в состав которых входит водород,замерзают при -90 градусах, а закипают при 70 градусах. Но вода становитсяльдом, когда температура достигает нуля, а закипает при 100 градусах. Чтобыобъяснить такие отклонения от нормы, требуется разобраться, в чем особенностьстроения молекулы воды. Дело в том, что вода – это ассоциированная жидкость.

Это свойство подтверждается и большой теплотойпарообразования, что делает жидкость хорошим энергоносителем. Вода – отличныйрегулятор температуры, способен нормализировать резкие перепады этогопоказателя. Теплоемкость жидкости повышается, когда ее температура 37 градусов.Минимальные показатели соответствуют температуре человеческого тела.

Относительная молекулярная масса воды составляет 18.Рассчитать этот показатель достаточно легко. Следует заранее ознакомиться сатомной массой кислорода и водорода, которая равна 16 и 1 соответственно. Вхимических задачах нередко встречается массовая доля воды. Этот показательизмеряется в проценте и зависит от формулы, которую требуется рассчитать.

Строение молекулы в различных агрегатных состояниях воды

В жидком состоянии молекула воды состоит из моногидроля,дигидроля и тригидроля. Количество этих элементов зависит от агрегатногосостояния жидкости. Пар включает одну H₂O – гидроль (моногидроль). Две H₂Oобозначают жидкое состояние – дигидроль. Три H₂O включает лед.

Агрегатные состояния воды:

  • Жидкое. Между одиночными молекулами, которые связаны водородными связями, располагаются пустоты.
  • Пар. Одиночные H₂O никак не соединяются между собой.
  • Лед. Твердое состояние отличается прочными водородными связи.

При этом существуют переходные состояния жидкости, например,при испарении или замерзании. Для начала требуется разобраться, отличаются лимолекулы воды от молекул льда. Так замерзшая жидкость имеет кристаллическуюструктуру. Модель льда может иметь форму тетраэдр, тригональной и моноклиннойсингонии, куба.

Обычная и замерзшая вода отличаются плотностью.Кристаллическая структура приводит к меньшей плотности и увеличению объема.Основное различие между жидким и твердым состоянием – это количество, сила иразновидность водородных связей.

[attention type=yellow]

Состав не меняется ни в одном агрегатном состоянии.Отличается строение и движение составных частей жидкости, сила связей водорода.Обычно молекулы воды слабо притягиваются друг к другу, размещаются хаотично,поэтому жидкость такая текучая. Лед отличается более сильным притяжением, таккак создается плотная кристаллическая решетка.

[/attention]

Многих интересует, одинаковы ли объемы и состав молекулхолодной и горячей воды. Важно запомнить, что состав жидкости не меняется ни водном из агрегатных состояний. Молекулы при нагревании или остывании жидкостиотличаются расположением. В холодной и горячей воде разные объемы, так как в первомслучае структура упорядоченная, а во втором – хаотичная.

Когда лед тает, то его температура не меняется. Только послетого, как жидкость меняется свое агрегатное состояние, показатели начинаютподниматься. Для таяния требуется определенное количество энергии, котороеназывается удельной теплотой плавления или лямбда воды. Для льда показательравен 25000 Дж/кг.

Источник: https://VodaVoMne.ru/svojstva-vody/molekula-vody

Какое строение имеет молекула воды

Диполь вода

Вода является источником жизни для всех живых организмов.

Молекула воды имеет уникальное строение. В ней удивительным образом сочетаются прочность и устойчивость кристаллической структуры (льда), и подвижность жидкого вещества.

В статье мы подробно рассмотрим особенности строения молекулы воды в различных агрегатных состояниях: жидком, твердом, газообразном.

Какое строение имеет молекула воды

Долгое время химики считали воду простым соединением, не вступающим в сложные реакции.

Состав воды как сложного вещества был установлен Лавуазье в 1783 г.

Одна молекула воды состоит из трех атомов: двух атомов водорода и одного атома кислорода, которые соединены между собой ковалентной связью. Химическая формула: H₂O

Характерные свойства ковалентной связи — направленность, насыщаемость, полярность, поляризуемость. Они определяют химические и физические свойства соединений.

Молекула воды, картинка № 1

По форме молекула воды напоминает равнобедренный треугольник, в основании которого находятся два атома водорода.Связь между атомом кислорода и атомами водорода полярная, т.к. кислород притягивает электроны сильнее, чем водород.

Межъядерные расстояния О—Н близки к 0,1 нм, расстояние между ядрами атомов водорода равно 0,15 нм, угол между связями Н—О—Н равен 104,5°.

Молекула воды имеет два положительных и два отрицательных полюса и поэтому в большинстве случаев ведёт себя как диполь (т.е. на одной стороне – положительный заряд, на другой – отрицательный)

Значения эффективных зарядов на атомах составляет ±0,17 от заряда электрона.

Водородная связь

В жидкой воде происходит ассоциация молекул, т. е. соединение их в более сложные агрегаты за счёт особой химической связи, которая называется водородной.

Особенностями водородной связи, по которым её выделяют в отдельный вид, является её не очень высокая прочность.

Водородная связь также играет важную роль в процессах растворения, поскольку растворимость зависит и от способности соединения давать водородные связи с растворителем. В результате содержащие ОН-группы такие вещества, как сахар, глюкоза, спирты, карбоновые кислоты, как правило, хорошо растворимы в воде.

На картинке № 2 показано образование димера воды с одной водородной связью.

Димер — это две молекулы Н2О, соединенные водородной связью. Связь между молекулами воды водородная.

[attention type=red]

Каждая молекула способна образовать четыре водородные связи: две между неподеленными электронными парами её атома кислорода и атомами водорода соседних молекул и ещё две – между атомами водорода и атомами кислорода двух других молекул.

[/attention]

Энергия водородной связи может изменяться от 17 до 33 кДж/моль.

Строение молекулы в различных агрегатных состояниях

Вода может быть в нескольких состояниях:

  1. Жидком. Это ее преимущественное состояние в нормальных условиях. Жидкая вода образует многочисленные реки, ручьи, озёра, Мировой океан.
  2. Твердом – это лед, а его кристаллы часто образуют иней или снег.
  3. Газообразном — водяной пар.

Существуют также и переходные состояния жидкости, которые возникают при замерзании или испарении.

Примечательно, что различные формы воды могут одновременно находиться рядом и даже взаимодействовать, например реки с ледниками, айсберги с морской водой, облака на небе с водяным паром.

Строение молекулы воды, водородная связь способствует расположению молекул воды. Рассмотрим особенности каждого агрегатного состояния по отдельности.

Лед

Представляет собой твердое состояние воды.

Молекулы воды образуют слои, причём каждая молекула связана с тремя молекулами в своём слое и с одной молекулой соседнего слоя. Расстояние между атомами кислорода ближайших молекул равно 0,276 нм.

Атом кислорода связан с четырьмя атомами водорода: с двумя, расположенными на расстоянии 0,096 — 0,102 нм посредством валентных связей, и с двумя другими, находящимися на расстоянии 0,174 — 0,180 нм посредством водородных связей.

Жидкая вода

В отличие от структуры льда структура жидкой воды исследована ещё недостаточно.

Предполагается, что жидкая вода по своему строению представляет нечто среднее между кристаллами льда и паром.

В результате изучения молекулы воды с помощью инфракрасных и рентгеновых лучей было видно, что при температуре близкой к точке замерзания, молекулы жидкой воды собираются в небольшие группы, практически так, как в кристаллах.

При температуре близкой к точке кипения они располагаются более свободно.

Водяной пар

Это газообразное агрегатное состояние воды.

При данном состоянии молекула воды не имеет структуры и состоит преимущественно из мономерных молекул воды, которые находятся на расстояние относительно друг друга.

Из чего состоит вода

При обычных условиях вода выглядит как прозрачная жидкость. У нее отсутствуют вкус и запах. При небольшой толщине слоя не наблюдается даже цвета.

Вода является отличным растворителем. В природе в ней постоянно находятся растворенные газы и соли. При соединении атомов кислорода с водородом получается молекула воды. Поскольку более сильными являются водородные соединения, то, когда происходит их разрыв, они прикрепляются к иным веществам, помогая тем растворяться.

Из-за своего малого размера каждую молекулу растворенного вещества окружают очень много молекул воды. Благодаря этому в ней присутствуют отрицательные и положительные ионы.

Чистая вода является еще и хорошим изолятором с концентрацией протонов и гидроксильных ионов в количестве 10-7 моль/л, это позволяет ей проводить электричество. Именно по ее электропроводности можно оценивать чистоту жидкости.

При взаимодействии с другими веществами состав воды не изменяется, что играет особую роль в жизни любого живого организма. Ведь очень важно, чтобы жидкостные растворы, через которые в организм поступают полезные вещества, не изменялись.

Кроме того, вода хорошо поглощает инфракрасное и микроволновое излучение, а также способна хранить в себе память о веществах, которые были в ней растворены.

Элементы

Проходя гидрологический цикл: испарение, конденсацию и выпадение в виде осадков вода может дополняться разными химическими элементами, которые можно разделить на 6 категорий. Рассмотрим информацию в таблице № 1.

Таблица № 1 «Элементы, которые могут входить в состав воды».

ИоныNa, K, Mg, Ca, анионы: Cl, HCO3 и SO4. Эти компоненты находятся в воде в наибольшем, по сравнению с другими, количестве.
Растворенные газыКислород, азот, сероводород, углекислый газ и прочие. Количество каждого газа в воде напрямую зависит от ее температуры.
Биогенные элементыГлавными из них являются фосфор и азот, которые поступают в жидкость из осадков
МикроэлементыИх насчитывается около 30 видов: бром, селен, медь, цинк и т. д. Показатели их в составе воды очень малы и колеблются от 0,1 до микрограмма на 1 литр.
Органические веществаСпирты, углеводы, альдегиды, фенолы, пептиды и прочее.
ТоксиныТяжелые металлы и продукты нефтепереработки.

В настоящий момент доступны специальные методы очистки, которые эффективно борются с вредными химическими соединениями.

Вода также может содержать в себе магний и катионы кальция. В зависимости от этого ее подразделяют на мягкую и жесткую.

По изотопам водорода в молекуле воды можно говорить о легкой воде, тяжелой и сверхтяжелой воде.

Подводим итоги

Вода необходима для жизни всего живого на Земле. Она участвует в мировом круговороте воды в природе. Благодаря испарению с поверхности водоемов, почвы, растений образуются облака. Затем они выпадают в виде дождя, снега, града, питая собой подземные воды и родники. Родниковые воды по рекам попадает в море.

Таким образом, количество воды на Земле не изменяется, она только меняет свои формы — это и есть круговорот воды в природе.

Уникальное строение молекулы воды помогает ей трансформироваться в три агрегатных состояния.

[attention type=green]

При замерзании воды ее молекулы собираются в небольшие группы. При испарении находится на расстоянии относительно друг друга. Жидкая вода по своему строению представляет нечто среднее между кристаллами льда и паром.

[/attention]

Список литературы

  1. Химия и микробиология воды. Учебное пособие В. В. Котов, Г.А. Нетесова
  2. Конспект лекций ГИДРОГЕОХИМИЯ. Киреева Т.А., МГУ им. М.В. Ломоносова, 2016

Источник: https://vodasila.ru/o-vode/kakoe-stroenie-imeet-molekula

Диполь воды: Молекула воды – Страница не найдена | SmartVopros — RC74 — интернет-магазин радиоуправляемых моделей

Диполь вода

Вода (оксид водорода) Н2О – простейшее устойчивое соединение водорода с кислородом. Молекулярная масса воды 18,0160, на водород приходится 11,19% по массе, а на кислород – 88,81%.

Как ранее говорилось, в природе существует три изотопа водорода – легкий водород Н1, дейтерий D (Н2) и тритий (Н3) и три изотопа кислорода – О16, О17 и О18. Искусственно получены в ускорителях сверхтяжелые изотопы водорода Н4 и Н5 и шесть изотопов кислорода: три легких – О13, О14, О15, два тяжелых – О19, О20 и один сверхтяжелый – О24.

Теоретически пять изотопов водорода и девять изотопов кислорода могут образовать 135 разновидностей молекулы воды, из которых устойчивыми являются девять, включающих стабильные изотопы.

В природной воде на долю О16 приходится 99,75% по массе, на долю О18 – 0,2%, на О17 – 0,04% и на Н1Н2О16 – примерно 0,093%; остальные пять разновидностей присутствуют в ничтожных количествах [4].

Строение воды

Молекула воды имеет угловое строение: входящие в её состав ядра образуют равнобедренный треугольник, в основании которого находятся два водорода, а в вершине – атом кислорода.

Межъядерные расстояния О – Н близки к 0,1 нм, расстояние между ядрами атомов водорода равно 0,15 нм.

Из шести электронов, составляющих внешний электронный слой атома кислорода в молекуле воды, две электронные пары образуют ковалентные связи О-Н, а остальные четыре электрона представляют собой две неподелённые электронные пары (рисунок 1).

Рисунок 1 – Модели строения молекулы воды [3]

Молекула воды представляет собой маленький диполь, содержащий положительный и отрицательный заряды на полюсах.

Около ядер водорода имеется недостаток электронной плотности, а на противоположной стороне молекулы, около ядра кислорода, наблюдается избыток электронной плотности. Именно такая структура и определяет полярность молекулы воды.

Если соединить прямыми линиями эпицентры положительных и отрицательных зарядов, получится объемная геометрическая фигура – правильный тетраэдр (рисунок 1) [19,20].

С позиций метода валентных связей образование химических связей в молекуле воды можно объяснить за счёт перекрывания двух одноэлектронных p-облаков атома кислорода и одноэлектронных s-облаков двух атомов водорода.

[attention type=yellow]

Ввиду того что участвующие в образовании химических связей p-облака кислорода расположены относительно друг друга под углом в 90, валентный угол НОН должен был также соответствовать этому значению. Однако в действительности он состовляет 104,5.

[/attention]

Отклонение валентного угла от ожидаемого можно объяснить с двух позиций.

Согласно одной из них увеличение валентного угла с 90 до 104,5 можно объяснить отталкиванием атомов водорода, который вследствие большой разности в электроотрицательности с кислородом (разность составляет 1,4 по шкале Полинга) приобретают в молекуле воды частичный положительный заряд (плюс 0,33 на каждом атоме). Эффективный заряд атома кислорода составляет минус 0,66.

С точки зрения концепции гибридизации атом кислорода должен находится в состоянии sp3-гибридизации, в которой принимают участие две орбитали с неподелёнными электронными парами и две орбитали, осуществляющие связи с водородом.

В соответствии с этим валентный угол между тетраэдрически расположенными в пространстве орбиталями кислорода должен составить порядка 109,5.

Отклонение валентного угла НОН от тетраэдрического можно объяснить тем, что электронные пары связи О – Н занимают в пространстве меньший объём, чем неподелённые пары кислорода [3].

Особенности строения молекулы воды имеют важные следствия.

Во-первых, из-за неравномерности распределения электронной плотности валентных электронов молекула Н2О представляет собой диполь с отрицательным полюсом на кислороде и положительным со стороны атома водорода. Дипольный момент воды составляет 6,1710-30 Клм. Это достаточно большая величина. Для сравнения, дипольный момент метана равен 0, аммиака – 4,4410-30 Кл м.

Во-вторых, большой дипольный момент воды является причиной возникновения диполь-дипольных и ион-дипольных взаимодействий в водных растворах.

В-третьих, молекула воды образует водородные связи.

В-четвёртых, неподелённые электронные пары кислорода позволяют Н2О выступать в качестве лиганда с образованием комплексных соединений [3].

[attention type=red]

Вода имеет очень высокие температуры замерзания (0) и кипения (100) (рисунок 2). Это позволяет ей существовать во всех агрегатных состояниях: твердом (лед), жидком (вода) и газообразном (пар) (рисунок 3).

[/attention]

Рисунок 2 – Аномалии точек кипения и замерзания воды

Рисунок 3 – Агрегаты состояния воды: а – лед, б – вода, в – пар [2]

Из одиночных молекул вода состоит в парообразном состоянии.

При температуре ниже температуры кипения, когда кинетическая энергия молекул становится ниже их потенциальной энергии взаимодействия, вода, как и любое вещество в этом случае, переходит в жидкое состояние.

Но температура этого фазового перехода для воды почти на 200выше, чем это следовало бы ожидать из характера того межмолекулярного взаимодействия, которое должно осуществлять между подобными ей по составу молекулами, например сероводорода.

Высокая полярность воды является лишь одной из причин ассоциации молекул воды, которые могут комбинироваться по две, три и более вследствие взаимного притяжения противоположно заряженных концов диполя [3].

Главной причиной образования ассоциатов (Н2О)х являются водородные связи [3]. В твердом состоянии атом кислорода каждой молекулы воды образует две водородные связи (показаны пунктиром) с соседними молекулами по схеме (рисунок 4) [4].

Благодаря им жидкая вода – это не разупорядоченное движение молекул, а состояние, близкое к аморфному.

В нём молекулы воды ассоциированы в агрегаты (Н2О)х – кластеры со степенью ассоциации () до 130 молекул воды при 0 , до 90 – при 20, до 60 – при 72(рисунок 5) [3].

Рисунок 4 – Схема образования водородных связей [4]

Рисунок 5 – Некоторые возможные структуры кластеров воды

Время жизни таких кластеров небольшое (10-11 – 10-10 с). В их образовании участвуют не все молекулы, иначе бы их плотность в жидком состоянии должна была бы составить не 1 г/см3, а 1,84 г/см3. Последняя величина рассчитана из предположения плотной упаковки молекул Н2О с радиусом, равным 1,38 , который определен из размеров кристаллической решетки льда [3].

[attention type=green]

Схема кристаллической решетки льда представлена на рисунке 6. Каждая молекула Н2О (черные шарики) окружена тетраэдрически четырьмя другими молекулами – тремя из того же слоя и одной из соседнего слоя молекул. Структура льда является наименее плотной структурой.

[/attention]

Ее особенность заключается в наличии пустот, размеры которых превышают размеры молекул Н2О. При плавлении льда часть водородных связей разрушается, и в пустотах оставшихся агрегатов могут разместиться отдельные молекулы воды, вследствие чего достигается более плотная упаковка молекул.

Поэтому при плавлении льда объем воды уменьшается, а плотность возрастает.

Рисунок 6 – Кристаллическая решетка льда [4]

Диполь — вода

Cтраница 1

Диполи воды имеют угловую форму, так как ядра атомов в них образуют равнобедренный треугольник. В основании его расположены два протона, а в вершине — ядро атома кислорода. При этом в молекуле воды две s / Я-гибридные орбитали атома кислорода образуют две ко-валентные связи О — Н ( длина которых около 0 1 нм) и остаются еще две неподеленные пары электронов.  [2]

Диполи воды соединены с гидрофильными группами белков водородными связями. Учитывая явления гидратации, можно объяснить рассмотренный нами процесс высаливания белков из растворов.

При прибавлении к раствору белка высоких концентраций солей или таких органических растворителей, как спирт или ацетон, возникает конкуренция за молекулы воды между солью или спиртом, с одной стороны, и молекулами белка — с другой.

При определенных концентрациях ионы солей, молекулы спирта или ацетона связывают такое большое количество молекул воды, что несвязанной воды недостаточно для растворения белка, и он выпадает в осадок.  [3]

Диполи воды своими отрицательно заряженными концами притягиваются к положительным ионам металлов или водорода. Чем меньше заряд и больше размер ионов, тем быстрее и легче они отрываются диполями воды от поверхности элементарных кристаллов. Связь между листочками в пачках нарушается, и глина распускается в воде.  [4]

Диполи воды, поляризуясь, образуют оболочку вокруг капли ртути, которая мешает адсорбироваться на поверхности капли новым ионам деполяризатора и предельный ток будет поддерживаться только диффузией деполяризатора через водную оболочку.  [6]

Если диполи воды ориентированы в поверхностном слое кристаллической решетки цементных минералов, то расстояния между поверхностными ионами практически не изменяются.  [7] [attention type=yellow]

Постепенно диполи воды проникают между ионами Na и С1 — в твердой фазе, отрывая их от кристалла.  [9] [/attention]

При этом диполи воды Б поверхностном слое ориентированы таким образом, что кислород обращен в сторону газовой фазы, а водород — в сторону соли.  [10]

Окружающие кристаллик диполи воды сразу же ориентируются так, что их отрицательные полюса подходят к положительным ионам натрия, а положительные полюса — ближе к отрицательным ионам хлора.

Таким образом, вокруг каждого иона поверхностного уровня кристалла образуется оболочка из молекул полярного растворителя — воды. Этот процесс называется сольватацией ( отлат.

Если растворителем является вода, то такая сольватация называется гидратацией.  [12]

К полярным группам притягиваются диполи воды, образующие вокруг коллоидной частицы сплошную ( или почти сплошную) водную оболочку. Спонслер установил, что одна группа ОН притягивает три молекулы воды, СООН — четыре молекулы, СО — две молекулы, NH — две молекулы, Nh3 — три молекулы.  [13]

К полярным группам притягиваются диполи воды, образующие вокруг коллоидной частицы сплошную ( или почти сплошную) водную оболочку. Спонслер установил, что одна группа ОН притягивает три молекулы воды, СООН — четыре молекулы, С О — две молекулы, NH — две молекулы, МН2 — три молекулы.  [14]

Знак минус означает, что диполи воды обращены положительным концом наружу.  [15]

Страницы:      1    2    3    4    5

Электрический дипольный момент — Википедия

Электри́ческий дипо́льный моме́нт — векторная физическая величина, характеризующая, наряду с суммарным зарядом (и реже используемыми высшими мультипольными моментами), электрические свойства системы заряженных частиц (распределения зарядов) в смысле создаваемого ими поля и действия на неё внешних полей. после суммарного заряда и положения системы в целом (её радиус-вектора) характеристика конфигурации зарядов системы при наблюдении её издали.

Дипольный момент — первый[прим 1]мультипольный момент.

Простейшая система зарядов, имеющая определенный (не зависящий от выбора начала координат) ненулевой дипольный момент — диполь (две точечные частицы с одинаковыми по величине разноимёнными зарядами). Электрический дипольный момент такой системы по модулю равен произведению величины положительного заряда на расстояние между зарядами и направлен от отрицательного заряда к положительному, или:

p=ql,{\displaystyle \mathbf {p} =q\mathbf {l} ,}

где q — величина положительного заряда, l{\displaystyle \mathbf {l} } — вектор с началом в отрицательном заряде и концом в положительном.

Для системы из N частиц электрический дипольный момент равен

p=∑i=1Nqiri,{\displaystyle \mathbf {p} =\sum _{i=1}{N}q_{i}\mathbf {r_{i}} ,}

где qi{\displaystyle q_{i}} — заряд частицы с номером i,{\displaystyle i,} а ri{\displaystyle \mathbf {r_{i}} } — её радиус-вектор; или, если суммировать отдельно по положительным и отрицательным зарядам:

p=∑i=1N+qi+ri−∑i=1N−|qi−|ri=Q+R+−|Q−|R−,{\displaystyle \mathbf {p} =\sum _{i=1}{N{+}}q_{i}{+}\mathbf {r_{i}} -\sum _{i=1}{N{-}}\left|q_{i}{-}\right|\mathbf {r_{i}} =Q{+}\mathbf {R} {+}-|Q{-}|\mathbf {R} {-},}

где N±{\displaystyle N{\pm }} — число положительно/отрицательно заряженных частиц, N=N++N−,{\displaystyle N=N{+}+N{-},} qi±{\displaystyle q_{i}{\pm }} — их заряды; Q+,R+,Q−,R−{\displaystyle Q{+},\mathbf {R} {+},Q{-},\mathbf {R} {-}} — суммарные заряды положительной и отрицательной подсистем и радиус-векторы их «центров тяжести»[прим 2].

Электрический дипольный момент нейтральной системы зарядов не зависит от выбора начала координат, а определяется относительным расположением (и величинами) зарядов в системе.

[attention type=red]

Из определения видно, что дипольный момент аддитивен (дипольный момент наложения нескольких систем зарядов равен просто векторной сумме их дипольных моментов), а в случае нейтральных систем это свойство приобретает ещё более удобную форму в силу изложенного в абзаце выше.

[/attention]

Подробности определения и формальные свойства

Дипольный момент ненейтральной системы зарядов, вычисленный по приведенному выше определению, может выбором начала координат быть сделан равным любому наперед заданному числу (например, нулю).

Однако и в этом случае, если мы хотим избежать такого произвола, при желании может быть использована какая-нибудь процедура внесения однозначности (которая будет тоже представлять собой предмет произвольного условного соглашения, но всё же будет формально фиксирована).

Но и при произвольном выборе начала координат (ограничивающемся тем условием, чтобы начало координат находилось внутри данной системы зарядов или, по крайней мере, близко от неё, и уж во всяком случае не попадая в ту область, в которой мы вычисляем дипольную поправку к полю единственного точечного заряда или дипольный член мультипольного разложения) все вычисления (дипольной поправки к потенциалу или напряженности поля, создаваемого системой, действующий на неё со стороны внешнего поля вращающий момент или дипольная поправка к потенциальной энергии системы во внешнем поле) проходят успешно.

Пример:

Интересной иллюстрацией мог бы быть следующий пример:

Рассмотрим систему, состоящую из единственного точечного заряда q, однако начало координат выберем не совпадающим с его положением, хотя и очень близко от него (т.е. много ближе, чем расстояние, для которого мы хотим вычислить потенциал, создаваемый этой нашей простой системой). Таким образом, радиус вектор нашего точечного заряда будет rq;rq

Источник: https://rc74.ru/raznoe/dipol-vody-molekula-vody-stranica-ne-najdena-smartvopros.html

Будь здоров
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: