Длина одного витка спирали днк

Задачи по молекулярной биологии

Длина одного витка спирали днк
acherontiella1.

Сколько содержится нуклеотидов аденина, тимина, гуанина и цитозина во фрагменте молекулы ДНК, если в нем обнаружено 450 нуклеотидов с тимином, что составляет 30% от общего количества нуклеотидов в этом фрагменте ДНК?
[Відповідь 1]1.

Знаходимо % інших нуклеотидів. А=Т=30. Г+Ц=100-(30+30)=20 %.
Кількість А 450 нуклеотидів. Складаємо пропорцію. 450-30%; х-20%. Кількість Г і Ц 300 нуклеотидів кожного
2. Молекулярная масса полипептида составляет 70000.

Определите длину кодирующего его гена, если молекулярная масса одной аминокислоты в среднем равна 100, а расстояние между соседними нуклеотидами в цепи ДНК составляет 0,34 нм.

[Відповідь]Кількість амінокислот=70000:100=700
Кількість нуклеотидів 3*700=2100, довжина гена 2100*0,34=714 нм

3. Скорость удлинения молекулы и –РНК оставляет 50 нуклеотидов в секунду. Сколько времени необходимо затратить на синтез и – РНК, содержащей информацию о строении белка, молекулярная масса которого составляет 4500, если молекулярная масса одной аминокислоты в среднем равна 100.

[Відповідь]4500:100=45 амінокислот; у РНК повинно бути 45*3=135 нуклеотидів, швидкість 2,35 с

4. Все виды РНК синтезируются на ДНК – матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли, имеет следующую последовательность нуклеотидов: – АТАГЦТГААЦГГАЦТ-. Установите нуклеотидную последовательность участка молекулы т-РНК, который синтезируется на данном фрагменте ДНК, и аминокислоту, которую будет переносить эта т-РНК в процессе биосинтеза белка, если третий триплет соответствует антикодону т –РНК. Ответ поясните.

[Відповідь]Третій триплет відповідає антикодону, тільки Т міняємо на У. Шукаємо триплет ГАА, амінокислоту знаходимо у таблиці.

5. Сколько витков имеет участок двойной спирали ДНК, контролирующий синтез белка с молекулярной массой 30000, если молекулярная масса одной аминокислоты в среднем равна 100, а на один виток спирали ДНК приходится 10 нуклеотидов.

[Відповідь]Амінокислот у білку 30000:100=300. Нуклеотидів у гені, що кодує цей білок, 300*3=900. Витків спіралі 90.

6. Отрезок молекулы ДНК, определяющий первичную структуру белка, содержит следующую последовательность нуклеотидов: – АТГ ГЦТ ЦТЦ ЦАТ ТГГ – . Определите последовательность нуклеотидов на и-РНК, число т-РНК, которые участвуют в биосинтезе белка, и нуклеотидный состав антикодонов т-РНК. Полученные результаты объясните.

[Відповідь]УАЦ ЦГА ГАГ ГУА АЦЦ, т-РНК 5; антикодони АУГ ГЦУ ЦУЦ ЦАУ УГГ

7. Информационная часть и – РНК содержит 135 нуклеотидов. Определите число аминокислот, входящих в кодируемый ею белок, число молекул т – РНК, участвующих в процессе биосинтеза этого белка, число триплетов в участке гена, кодирующих первичную структуру этого белка (следует учитывать, одна т – РНК доставляет к рибосоме одну аминокислоту). Объясните полученные результаты.

[Відповідь]Амінокислот 45, триплетів і тРНК стільки ж.

8. Последовательность нуклеотидов в цепи ДНК:- ЦТАЦТТАТЦАЦГААГ -. Объясните, к каким последствиям может привести случайное добавление нуклеотида гуанина между четвертым и пятым нуклеотидом.

[Spoiler (click to open)]ЦТА ЦГТ ТАТ ЦАЦ ГАА Г зміниться структура білка. іРНК ГАУ ГЦА АУА ГУГ ЦУУ

9. Полипептид состоит из 27 аминокислот. Определите число нуклеотидов на участке гена, который кодирует первичную структуру этого полипептида, число кодонов на и- РНК, соответствующее этим аминокислотам, число молекул т – РНК, участвующих в биосинтезе этого полипептида. Ответ поясните.

[Відповідь]нуклеотидів 81, кодонів іРНК 27, тРНК 27

10. Все виды РНК синтезируются на ДНК – матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли т-РНК, имеет следующую последовательность нуклеотидов: – ТАТ ЦГА ЦТТ ГЦЦТГА-. Установите нуклеотидную последовательность участка молекулы т-РНК, который синтезируется на данном фрагменте ДНК, и аминокислоту, которую будет переносить эта т-РНК в процессе биосинтеза белка, если третий триплет соответствует антикодону т –РНК. Ответ поясните.

[Відповідь]антикодон буде ЦУУ

11. Две цепи удерживаются друг против друга водородными связями. Определите: число двойных и тройных водородных связей в этой цепи ДНК, а также ее длину, если известно, что нуклеотидов с аденином – 12, с гуанином – 20 в обеих цепях.

[Spoiler (click to open)]12*2*+20*3

12. Участок одной из двух цепей молекулы ДНК содержит 200 нуклеотидов с аденином, 300 нуклеотидов с тимином, 250 – с гуанином и 120 – с цитозином. Какое число нуклеотидов с А, Т, Г, Ц содержится в молекуле ДНК (в двух цепях)?. Сколько аминокислот должен содержать белок, кодируемый эти участком молекулы ДНК? Ответ пояните.

[Відповідь]Т=200=А, А=300=Т, Ц=250=Г, Г=120=Ц. Нуклеотидів у двох ланцюгах 870*2, на ділянці гену 870, амінокислот 290

13. Две цепи удерживаются друг против друга водородными связями. Определите число водородных связей в этой цепи ДНК, если известно, что нуклеотидов с аденином – 42, с гуанином –32 в обеих цепях.

[Spoiler (click to open)]як задача 11

14. Участок молекулы ДНК имеет структуру: АЦЦ АТА ГЦТ ЦАА ГГА ГГЦ ТТА. Определите: структуру второй цепи ДНК, нуклеотидный состав и – РНК и число тройных водородных связей в этом участке молекулы ДНК.

Кількість водневих зв'язків між аденіном і тиміном 2, між гуаніном і цитозином 3

[Відповідь]ДНК ТГГ ТАТ ЦГА ГТТ ЦЦТ ЦЦГ ААТ15. Две цепи удерживаются друг против друга водородными связями. Определите число нуклеотидов с А,Т, Г, Ц в молекуле ДНК, в которой 42 нуклеотида соединяются между собой двумя водородными и 48 нуклеотидов – тремя водородными связями. Полученные результаты поясните. [Відповідь]Двома водневими поєднані А і Т, тобто їх по 21, а Г і Ц по 24 (48:2)

16. В биосинтезе полипептида участвовали т – РНК с антикодонами ААУ, ЦЦГ, ГЦГ, УАА, ГЦА. Определите нуклеотидную последовательность участка каждой цепи молекулы ДНК, который несет информацию о синтезируемом белке, и число нуклеоитидов, содержащих А,Г, Т, Ц в двуцепочечной молекуле ДНК. Ответ поясните.

[Відповідь]Антикодони відповідають ДНК. Кодуючий ланцюг ААТ, ЦЦГ, ГЦГ, ТАА, ГЦА. Змістовний ланцюг, той, що не переписується під час транскрипції, приписуємо комплементарно і ТТА ГГЦ ЦГЦ АТТ ЦГТ рахуємо нуклеотиди.

17. Белок состоит из 210 аминокислот. Установите, во сколько раз молекулярная масса участка гена, кодирующего данный белок, превышает молекулярную массу белка, если средняя масса аминокислоты – 110, а нуклеотида – 300. Ответ поясните.

[Відповідь]3*300*210:210*110

18. Фрагмент цепи ДНК имеет последовательность нуклеотидов: ТТТ АГЦ ТГТ ЦГГ ААГ. В результате произошедшей мутации в пятом триплете третий нуклеотид замене на А. Определите последовательность нуклеотидов на и – РНК по исходному фрагменту цепи ДНК и измененному. Объясните, что произойдет с фрагментом молекулы белка и его свойствами после возникшей мутации ДНК.

[Відповідь]ААА ген УУУ кодон, зміниться первинна структура білка та її властивості.

?

|

acherontiellaБіосинтез білків включає: біосинтез амінокислот, транскрипцію, процесинг (включаючи сплайсинг), трансляцію та посттрансляційну модифікацію білків.
https://www.khanacademy.org/partner-content/nova/rnawondermolecule/v/proteinsynthesis
https://www.khanacademy.org/science/biology/gene-expression-central-dogma/translation-polypeptides/v/translation-mrna-to-protein
https://www..com/watch?v=msXWwcK2kqUБіосинтез білку належить до процесів анаболізму або асиміляції.Процеси розкладання поглинутих органічних речовин називають катаболізм або дисиміляція.Під час транскрипції відбувається зчитування генетичної інформації, зашифрованої в молекулах ДНК, і запис цієї інформації в молекули мРНК. Транскрипція відбувається у ядрі, за цей процес відповідає ДНК залежна РНК полімераза.на одному з ланцюжків ДНК синтезується одноланцюжкова молекула інформаційної або матричної РНК (мРНК) згідно з принципом комплементарності.

Реплікація відбувається у 5'-3' напрямку.Послідовність з трьох нуклеотидів в мРНК, відповідна послідовності ДНК, що кодує визначену амінокислоту, називається кодоном. У бактерій також відбувається транскрипція.У вірусів, окрім прямої, реплікація може відбуватися обернено. На матриці РНК+вмісного ввруса синтезується ДНК. Фермент, що відповідає за цей процес — обернена транскриптаза або РНК залежна ДНК полімераза.Готова РНК транспортуєттся через ядерні пори у цитоплазму.Під час ряду послідовних стадій процесингу з мРНК видаляються деякі фрагменти, непотрібні в подальших стадіях (сплайсинг), і відбувається редагування нуклеотидних послідовностей. Також відбувається кепування, поліаденілування і метилювання.Сплайсинг урізноманітнює біосинтез білка еукаріот.Можливо комбінування екзонів та вилучення інтронів гену для отримання більшої різноманітності білків, що кодуються єдиною послідовністю ДНК. Після транспортування зрілої молекули мРНК з ядра до рибосом відбувається власне синтез білкових молекул шляхом приєднання окремих амінокислотних залишків до поліпептидного ланцюжка, що росте.Трансляція полягає в синтезі поліпептидного ланцюжка відповідно до інформації, закодованої в матричній РНК. Амінокислотна послідовність шифрується за допомогою транспортних РНК (тРНК), які утворюють з амінокислотами комплекси — аміноацил-тРНК. Кожній амінокислоті відповідає своя тРНК, що має відповідний антикодон, «відповідний» до кодону мРНК. Під час трансляції рибосома рухається уподовж мРНК, у міру цього нарощується поліпептидний ланцюжок. Енергією біосинтез білка забезпечується за рахунок АТФ.Трансляція відбувається у цитоплазмі на рибосомах. У еукаріот рибосоми знаходяться на ендоплазматичній сітці, а у прокаріот просто на вигинах мембрани. На останній стадії посттрансляційної модифікації відбуваються зміни новосинтезованого білка додаванням небілкових молекул до білка та ковалентними модифікаціями його амінокислот.Ці модифікації здатні значно розширити різноманітність можливих білків, надаючи їм нові властивості. Прикладами пост-трансляційних модифікацій служить приєднання різних функціональних груп, приєднання ліпідів і вуглеводнів, зміна стандартних амінокислот на нестандартні (наприклад, утворення цитруліну), структурні змін (наприклад, утворення дісульфідних містків між цистеїнами), видалення частини білка як на початку (сигнальна послідовність, старт-кодон), так і в окремих випадках в середині.

Повторення

ВуглеводиБіологічно активні речовиниЯдро і ядерцеБіосинтез білка

Типи живлення

Источник: https://acherontiella.livejournal.com/37917.html

Формы ДНК, структура и синтез

Длина одного витка спирали днк

Дезоксирибонуклеиновая кислота – ДНК – служит носителем наследственной информации, передаваемой живыми организмами следующим поколениям, и матрицей для строительства белков и различных регуляторных факторов, потребных организму в процессах роста и жизнедеятельности. В этой статье мы остановимся на том, какими бывают наиболее распространенные формы структуры ДНК. Также мы обратим внимание на то, как строятся эти формы и в каком виде ДНК пребывает внутри живой клетки.

Уровни организации молекулы ДНК

Различают четыре уровня, определяющих строение и морфологию этой гигантской молекулы:

  • Первичный уровень, или структура – это порядок нуклеотидов в цепи.
  • Вторичная структура представляет собой знаменитую «двойную спираль». Устоялось именно это словосочетание, хотя на самом деле подобная структура напоминает винт.
  • Третичная структура образуется вследствие того, что между отдельными участками двухцепочечной закрученной нити ДНК возникают слабые водородные связи, придающие молекуле сложную пространственную конформацию.
  • Четвертичная структура – это уже сложный комплекс ДНК с некоторыми белками и РНК. В такой конфигурации ДНК упакована в хромосомы в ядре клетки.

Первичная структура: компоненты ДНК

Блоками, из которых строится макромолекула дезоксирибонуклеиновой кислоты, являются нуклеотиды, представляющие собой соединения, в состав каждого из которых входят:

  • азотистое основание – аденин, гуанин, тимин или цитозин. Аденин и гуанин относятся к группе пуриновых оснований, цитозин и тимин – пиримидиновых;
  • пятиуглеродный моносахарид дезоксирибоза;
  • остаток ортофосфорной кислоты.

При образовании полинуклеотидной цепочки важную роль играет порядок групп, образуемых атомами углерода в кольцевой молекуле сахара. Фосфатный остаток в нуклеотиде соединен с 5’-группой (читается «пять прайм») дезоксирибозы, то есть с пятым атомом углерода. Наращивание цепочки происходит путем присоединения к свободной 3’-группе дезоксирибозы фосфатного остатка следующего нуклеотида.

Таким образом, первичная структура ДНК в форме полинуклеотидной цепи – имеет 3’- и 5’-концы. Это свойство молекулы ДНК называется полярностью: синтез цепи может идти только в одном направлении.

Образование вторичной структуры

Следующий шаг в структурной организации ДНК базируется на принципе комплементарности азотистых оснований – их способности попарно соединяться друг с другом посредством водородных связей.

Комплементарность – взаимное соответствие – возникает по той причине, что аденин и тимин образуют двойную связь, а гуанин и цитозин – тройную.

Поэтому при формировании двойной цепи эти основания встают друг напротив друга, образуя соответствующие пары.

[attention type=yellow]

Полинуклеотидные последовательности располагаются во вторичной структуре антипараллельно. Так, если одна из цепочек имеет вид 3’ – АГГЦАТАА – 5’, то противоположная будет выглядеть следующим образом: 3’ – ТТАТГЦЦТ – 5’.

[/attention]

При образовании молекулы ДНК происходит закручивание сдвоенной полинуклеотидной цепи, причем от концентрации солей, от водонасыщенности, от строения самой макромолекулы зависит, какие формы может принимать ДНК на данной структурной ступени. Известно несколько таких форм, обозначаемых латинскими буквами A, B, C, D, E, Z.

Конфигурации C, D и E не встречены в живой природе и наблюдались только в лабораторных условиях. Мы рассмотрим основные формы ДНК: так называемые канонические A и B, а также конфигурацию Z.

А-ДНК – сухая молекула

А-форма – это правый винт с 11 комплементарными парами оснований в каждом витке. Диаметр его составляет 2,3 нм, а длина одного витка спирали – 2,5 нм. Плоскости, образуемые спаренными основаниями, имеют наклон 20° по отношению к оси молекулы. Соседние нуклеотиды расположены в цепочках компактно – между ними всего 0,23 нм.

Такая форма ДНК возникает при низкой гидратации и при повышенной ионной концентрации натрия и калия. Она характерна для процессов, в которых ДНК образует комплекс с РНК, поскольку последняя не способна принимать иные формы. Кроме того, А-форма весьма устойчива к ультрафиолетовому облучению. В этой конфигурации дезоксирибонуклеиновая кислота содержится в грибных спорах.

Влажная B-ДНК

При малом содержании солей и высокой степени гидратации, то есть в нормальных физиологических условиях, ДНК принимает свою главную форму B. Природные молекулы существуют, как правило, в В-форме. Именно она лежит в основе классической модели Уотсона-Крика и чаще всего изображается на иллюстрациях.

Данной форме (она также правозакрученная) свойственна меньшая компактность размещения нуклеотидов (0,33 нм) и большой шаг винта (3,3 нм). Один виток содержит 10,5 пары оснований, поворот каждой из них относительно предыдущей составляет около 36°. Плоскости пар почти перпендикулярны оси «двойной спирали». Диаметр такой сдвоенной цепочки меньше, чем у А-формы – он достигает только 2 нм.

Неканоническая Z-ДНК

В отличие от канонических ДНК, молекула типа Z представляет собой левозакрученный винт. Она самая тонкая из всех, имеет диаметр всего 1,8 нм. Витки ее длиной 4,5 нм как бы вытянуты; эта форма ДНК содержит 12 спаренных оснований на каждый виток. Расстояние между соседними нуклеотидами также достаточно велико – 0,38 нм. Так что Z-форма характеризуется наименьшей степенью скрученности.

Образуется она из конфигурации B-типа на тех участках, где в составе нуклеотидной последовательности чередуются пуриновые и пиримидиновые основания, при изменении содержания ионов в растворе.

Формирование Z-ДНК связано с биологической активностью и является очень кратковременным процессом. Подобная форма нестабильна, что создает трудности при исследовании ее функций.

Пока что они в точности не ясны.

Репликация ДНК и ее строение

И первичная, и вторичная структуры ДНК возникают в ходе явления, называемого репликацией – образования из материнской макромолекулы двух идентичных ей «двойных спиралей». При репликации исходная молекула расплетается, и на освободившихся одиночных цепочках происходит наращивание комплементарных оснований.

Поскольку половинки ДНК антипараллельны, этот процесс протекает на них в разных направлениях: по отношению к материнским цепочкам от 3’-конца к 5’-концу, то есть новые цепочки растут в направлении 5’ → 3’.

Лидирующая цепь синтезируется непрерывно в сторону репликационной вилки; на отстающей цепи синтез совершается от вилки отдельными участками (фрагменты Оказаки), которые затем сшивает между собой особый фермент – ДНК-лигаза.

Пока продолжается синтез, уже сформированные концы дочерних молекул претерпевают винтообразное закручивание. Затем, еще до окончания репликации новорожденные молекулы начинают образовывать третичную структуру в процессе, именуемом сверхспирализацией.

Сверхспирализованная форма ДНК возникает, когда двухцепочечная молекула совершает дополнительное закручивание. Оно может быть направлено по часовой стрелке (положительно) либо против (в этом случае говорят об отрицательной сверхспирализации). ДНК большинства организмов суперскручена отрицательно, то есть против основных витков «двойной спирали».

В результате образования дополнительных петель – супервитков – ДНК приобретает сложную пространственную конфигурацию.

В клетках эукариот этот процесс происходит с формированием комплексов, в которых ДНК отрицательно навивается на гистоновые белковые комплексы и принимает вид нити с бусинами-нуклеосомами. Свободные участки нити называются линкерами.

[attention type=red]

В поддержании суперскрученной формы молекулы ДНК принимают участие и негистоновые белки, а также неорганические соединения. Так образуется хроматин – вещество хромосом.

[/attention]

Хроматиновые нити с нуклеосомными бусинами способны к дальнейшему усложнению морфологии в процессе, называемом конденсацией хроматина.

Окончательная компактизация ДНК

В ядре форма макромолекулы дезоксирибонуклеиновой кислоты становится чрезвычайно сложной, компактизируясь в несколько этапов.

  1. Во-первых, нить сворачивается в особую структуру типа соленоида – хроматиновую фибриллу толщиной в 30 нм. На этом уровне ДНК, сворачиваясь, сокращает свою длину в 6-10 раз.
  2. Далее фибрилла при помощи специфических скэффолд-белков образует зигзагообразные петли, что уменьшает линейный размер ДНК уже в 20-30 раз.
  3. На следующем уровне формируются плотно упакованные петельные домены, чаще всего имеющие форму, условно названную «ламповая щетка». Они прикрепляются к внутриядерному белковому матриксу. Толщина таких структур составляет уже 700 нм, ДНК при этом укорачивается приблизительно в 200 раз.
  4. Последний уровень морфологической организации – хромосомный. Петельные домены уплотняются настолько, что достигается общее укорочение в 10 000 раз. Если длина растянутой молекулы – около 5 см, то после упаковки в хромосомы она уменьшается до 5 мкм.

Высшего уровня усложнения формы ДНК достигает в состоянии метафазы митоза. Именно тогда она приобретает характерный облик – две хроматиды, соединенные перетяжкой-центромерой, которая обеспечивает расхождение хроматид в процессе деления.

Интерфазная ДНК организована до доменного уровня и распределяется в ядре клетки без особого порядка.

Таким образом, мы видим, что морфология ДНК тесно связана с различными фазами ее существования и отражает особенности функционирования этой важнейшей для жизни молекулы.

Источник: https://FB.ru/article/394138/formyi-dnk-struktura-i-sintez

Из чего состоит ДНК | Структура цепей и молекул ДНК

Длина одного витка спирали днк
Из чего состоит ДНК? Кому и когда удалось найти эту молекулу в клетках людей, и прочих живых существ? В чём уникальность открытия механизма наследования и чем это обернулось для всего человечества, читайте далее в этой статье.

Открытие дезоксирибонуклеиновой кислоты произошло в 1869 году.

И принадлежит открытие Иоганну Фридриху Мишеру. Он был биологом из Швейцарии и занимался изучением гноя. По большому счёту открытие можно назвать случайным, и сам Мишер не понял, что именно он открыл. Он назвал своё открытие нуклеином.

А позже нуклеиновой кислотой, когда у неё обнаружились кислотные свойства.

Назначение этой кислоты было загадочно и неизвестно, хотя некоторые учёные уже поднимали вопрос о наследственности и существовании механизмов наследования. Современное представление о том из чего состоит цепь ДНК, было сформировано Д. Уотсоном и Ф. Криком в 1953 году.

Несколько ранее, в середине тридцатых годов советские ученые А.Р. Кезеля и А.Н. Белозерский доказали, что ДНК встречается у всех живых видов. До их работы считалось, что эта молекула присутствует только в организме животных видов, а в растениях присутствует только РНК.

Тот факт, что дезоксирибонуклеиновая кислота является механизмом сохранения наследственной информации, был открыт только в 1944 году группой исследователей из Освальда. Так, совокупными усильями разных учёных мира была приоткрыта тайна эволюционного процесса и механизмов в его основе.

Использование в медицине

Открытие того из чего состоит молекула ДНК дало толчок к развитию множества новых услуг и направлений экспериментальной медицины. Благодаря новым технологиям, которые стали возможны вследствие исследования генома, сегодня почти любому доступны:

  1.      Диагностика заболеваний на сверхранней стадии. Анализ позволяет выявить инфекцию, даже если заболевание находится в инкубационном периоде, и нет ни каких симптомов.
  2.      Определение отцовства. Так же материнства и прочих родственных связей. При этом различные тесты можно проводить, как с участием потенциальных родителей, так и без них.
  3.      Тестирование на непереносимость пищевых продуктов. Какие вещества хорошо усваиваются организмом, какие плохо или не усваиваются вовсе, что вызывает аллергические реакции – всё это расскажут результаты индивидуального исследования.
  4.      Анализ этнической принадлежности – с какими народами перекрещивались далекие предки, и какие национальности формируют вас сегодня.
  5.      Исследование на наличие наследственных заболеваний, в том числе и спящих, которые передаются через поколение и более.

И это только самые востребованные тесты, имеющие коммерческий интерес и полезные для простого обывателя. Если говорить о перспективах лабораторных научных исследований, то многие учёные-генетики не без энтузиазма готовятся совершить самое великое открытие за всю человеческую историю – победить болезни и саму смерть.

Строение молекулы ДНК

Дезоксирибонуклеиновая кислота состоит из двух цепочек нуклеотидов, которые объединены меж собой водородными связями и закручиваются в двойную спираль. Нуклеотиды в каждой цепи – это кирпичики, из которых складываются гены, биологическая их кодировка.

Для каждого гена его место положения в цепочке и порядок нуклеотидов условно одинаков. Условно поскольку у одного гена возможны вариации, различное расположение некоторых нуклеотидов в составе гена.

Но, в таком случае вместе со сменой структуры меняется и функциональность самого гена.

У всех живых организмов клеточная структура и эти клетки содержат внутри себя ядро – такие клетки называются эукариоты. У бактерий и архей (древних одноклеточных организмов) такого ядра нет. Так же ядра в клетке нет у вирусов и вироидов ( инфекционных агентов, вызывающих болезни растений), но считать ли их живыми до сих пор вопрос дискуссионный.

Ядра клеток содержат в себе структуры, хранящие наследственную информацию – хромосомы. А вот сама хромосома и содержит внутри себя спиральную молекулу дезоксирибонуклеиновой кислоты, которая осуществляет функцию хранения наследственной информации.

Процесс упаковки ДНК спиралей

Спираль генов, как не казалась бы она мала, всё же очень большая для микромира. Вероятно отсюда и её спиральная форма, которая позволяет ей быть более компактной. Помимо обычной спиральности ДНК может закручиваться и в форму суперспирали.

Суперспирализация – это явление, когда двойная спираль накручивается на гистоновый белок, и получается, что-то вроде биокатушки.

Если закручивание в двойную спираль укорачивает цепочку генов в 5 или 6 раз, то суперспирализация доводит это сокращение до 30 раз.

 Как гены связаны с ДНК

Гены это самая изученная и расшифрованная на сегодня часть ДНК. Так, каково строение генов ДНК? Фактически цепочки нуклеотидов из генов и состоят. Именно гены определяют цвет глаз, волос, форму черепа, рост, группу крови и прочие физиологические качества.

Остаётся ещё много областей генома, функциональность которых не известна. Всё, что пока о них могут сказать генетики, это то, что данные области генома не участвую (по крайней мере, напрямую) в формировании организма и его функционировании.

Хромосома: определение и описание

Считается, что хромосомы это нуклеотидные биомеханизмы, которые находятся в ядре клетки. Эти биомеханизмы являются носителями и передатчиками наследственной информации, и в свою очередь содержат в себе двойную спираль дезоксирибонуклеиновой кислоты.

Чем отличаются хромосомы друг от друга

На примере Х хромосомы, цепи нуклеотидов могут пересекаться внутри хромосомы различно:

  1.  В перекрестии хромосомы, пересекаясь точно посередине друг друга.
  2.  Там же, но пересекаясь не точно.

Во втором случае одни концы получившегося перекрестия будут длиннее, а другие короче. Называют такие концы длинным и коротким плечом хромосомы. Отсюда и форма Y хромосомы, у которой ярко выражены длинные плечи, а короткие настолько не велики, что схематически не указываются.

Науке известных хромосомы трёх основных форм:

  •  Х хромосома, которая встречается у женщин и у мужчин.
  •  Y хромосома, встречающаяся только у мужчин.
  •  В хромосома изредка встречается у растений, и считается отмирающей, поскольку редко наследуется. Обычно её наличие в растении связывают с его слабостью и болезненностью.

Всего в клетке человеческого организма находится 46 парных хромосом: 22 пары «обычных» и одна пара половых (ХХ у женщин и XY у мужчин). Интересный факт – если добавить или отнять всего одну пару хромосом, человек может стать помидором или орангутангом.

Наследственные болезни

Генетический код это очень многофункциональная и противоречивая структура. С одной стороны он должен хранить информацию в неизменном эталонном виде, и эта функция проявляется возможностью ДНК восстанавливать искусственные повреждения в следующем поколении. С другой же стороны, геном может быть либо поврежден, либо измениться сам, что называют мутацией.

Мутации естественное свойство генов, и последствия этих мутация бывают, как отрицательные, так и положительные. Хоть мутации и называют поломками, но это определение спорно. Некоторые мутации в чём-то ослабляют организм – именно эти мутации и ищут во время тестирования на непереносимость пищевых продуктов.

Такие мутации создают повышенные риски возникновения, какого либо заболевания при соблюдении некоторых факторов. Соответственно, если исключить эти факторы из своей жизни, то с ними будут исключены и вероятности возникновения заболевания.

Существуют и более сложные повреждения ДНК человека, которые вызывают врождённые наследственные заболевания. Например, одна лишняя хромосома в 21 паре вызывает у человека болезнь Дауна с самого рождения.

Расшифровка ДНК клетки это большое и дорогостоящее исследование всех известных человеческих генов. А после завершения исследовательского проекта «Геном человека» это порядка 25 тысяч генов. И хоть расшифровка значительно подешевела, и за прошедший десяток лет упала со ста тысяч долларов до двух тысяч на одного человека, далеко не каждому это покажется приемлемой ценой.

Для удешевления медицинских и генетических исследований всю расшифровку генома разделили тематически. Так стали появляться различные тестирования, по этому принципу они и планируются – выборка генов отвечающих за интересующие тематику исследования процессы.

Синтез РНК

Нуклеотиды (из которых формируются гены) подразделяются на 4 образующих элемента: аденин, тимин, гуанин и цитозин, которые содержат остатки фосфора, пептозы и азотистого основания. В цепочках ДНК эти нуклеотиды располагаются параллельно друг другу строгими парами: аденин только с тимином, а гуанин только с цитозином.

Необходимо подчеркнуть, что молекула дезоксирибонуклеиновой кислоты  ни целиком, ни частично не может (или не должна) покинуть пределов ядра. РНК выступает в роли копии участка цепи генома, которая способна покинуть ядро, попасть в саму клетку и воздействовать на идущие в ней процессы. И происходит это удивительным образом:

  •  Спираль генов раскручивается на одном из своих участков и формирует развернутые нити обоих цепочек генов.
  •  К развернутому участку подходит специальный фермент-строитель и поверх этого участка синтезирует копию.
  •  У копии есть одно ключевое отличие от оригинальной структуры нуклеотидов: тимин во всех парах ней заменён на урацил. Это и позволяет ей покидать пространство ядра клетки.

Синтез белка при помощи генов

Основное взаимодействие, которое происходит между генами и клеткой заключается в том, что разные гены могут заставлять клетку синтезировать различные белки с самыми неожиданными свойствами.

Так группа генов участвующих в процессе старения клетки может, как заставить её стареть быстрее, так и омолаживаться.

Тоесть, генов не только много, каждый из них может спровоцировать синтез нескольких видов белка.

Факты о ДНК

  1.      Редко, но бывают случаи, когда при беременности сначала развиваются близнецы, но потом они сливаются в единого человека. У таких людей двойное ДНК.
  2.      Иногда и генная криминалистика даёт сбои. Так, после пересадки костного мозга в теле пациента присутствует некоторое количество ДНК донора, и это может привести к ошибке тестирования.
  3.      Самым похожим на человеческий геном ДНК обладают земляные черви.
  4.      Вся цифровая информация в мире могла бы поместиться в двух граммах дезоксирибонуклеиновой кислоты.

Источник: https://mygenetics.ru/blog/genetika/iz-chego-sostoit-dnk/

Будь здоров
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: