Двигательные нейроны воспринимают возбуждение от вставочных нейронов

Содержание
  1. Двигательные нейроны человека | Строение и функции мотонейронов
  2. Виды двигательных нейронов
  3. К каким мышцам присоединены мотонейроны
  4. Сколько нейронов в организме
  5. Строение нейронов
  6. Заключение
  7.  
  8. Мотонейрон (двигательный нейрон) альфа и гамма: куда проводит нервный импульс, где находится
  9. Функции
  10. Смысл рисования нейрографики простыми словами
  11. Элементы нейрографики, что они обозначают в методе
  12. Фигуры
  13. Структура
  14. Строение и виды нейронов
  15. Как они работают
  16. Нейроны головного мозга – строение, классификация и проводящие пути
  17. Отростки
  18. Метаболизм в нейроне
  19. Функции нейрона
  20. Классификация нейронов
  21. Виды нейронов
  22. Развитие и рост нейронов
  23. Проводящие пути
  24. Проводящие пути головного мозга
  25. Взаимодействие с нейромедиаторами
  26. Восстанавливаются ли нервные клетки
  27. Влияние алкоголя на головной мозг
  28. Что такое вставочный нейрон
  29. Виды и характеристики нейронов
  30. Чувствительные
  31. Вставочные
  32. Двигательные
  33. Строение и функции
  34. Порядок взаимодействия
  35. Нервные ткани
  36. Нейрон
  37. Миелиновая оболочка
  38. Нейроглия
  39. Синапс
  40. Яд кураре
  41. Нервы и нервные узлы
  42. Болезни нервной системы

Двигательные нейроны человека | Строение и функции мотонейронов

Двигательные нейроны воспринимают возбуждение от вставочных нейронов
Человек ежедневно совершает множество действий и движений, и за каждым из самых простых движений стоит огромный механизм моторно-двигательного аппарата. Мы встаём рано утром, умываемся, кто-то делает зарядку, завтракаем и идём на работу, всё это происходит просто и буднично.

Но, если бы мы могли заглянуть, узнать, что происходит за занавесом этого представления, мы бы увидели, что за всеми этими действиями стоят нейроны головного мозга, и, в частности, двигательные нейроны человека. Что это за физиологические механизмы, где расположены, как они работают, где находится двигательный нейрон далее в этой статье.

Все действия физического характера, которые может осуществить человек, реализуются по одному и тому же принципу: за счёт сокращения и растяжения мышц и сухожилий. Происходят эти сокращения благодаря существованию сообщения всех мышц и сухожилий с единым координационным центром – головным мозгом. Состоят же эти сообщения из разнозадачных клеток – нейронов.

Соответственно в реализации двигательных функций участвую специальные двигательные клетки – мотонейроны.

Сокращение мышц происходит за счёт смены всего двух команд: расслабиться и напрячься – тоесть, распрямиться и сократиться. За каждое из этих состояний отвечает специальный мотонейрон. Мотонейрон, отвечающий за сокращение, называют сгибателем, а отвечающий за расслабление – разгибателем.

Виды двигательных нейронов

Двигательные нейроны подразделяют на центральные и периферические по их локализации в организме. Соответственно, центральные двигательные клетки находятся в спинном и головном мозге, а периферические непосредственно в мышцах и подсоединяются к ним через аксоны нейронов.

Центральные нейроны отвечают за сознательные движения и рефлекторные, от них расходятся электрохимические импульсы с командами к периферии, и передаются мышцам, органам и другим тканям.

Основное скопление групп двигательных клеток соматической нервной системы происходит в области передних рогов спинного мозга. Каждая группа отвечает за сокращение своих мышц.

Например, группа мотонейронов шейного отдела управляет мускулатурой рук.

[attention type=yellow]

Именно из-за участия спинного мозга и его мотонейронов в управлении двигательным аппаратом, позвоночник опасно травмировать и высок риск при травме, получить инвалидность. И даже массаж позвоночника стоит доверять только проверенным профессионалам.

[/attention]

Классификация двигательных нейронов:

  •  Клетки Реншо
  •  Малые альфа-мотонейроны.
  •  Большие альфа-мотонейроны.
  •  Гамма-мотонейроны.

Большие альфы формируют собой ствол нервной цепи, а малые альфа и гамма со своими небольшими аксонами передают сигналы в самые труднодоступные участки. Клетки Реншо выполняют специальную функцию коммутации сигналов. Это своего рода телефонисты, которые в прошлом веке вручную соединяли разных абонентов телефонной связи.

Всё нервная система, центральные и периферические нервы — это большой и сложный механизм, в котором согласованно работает множество элементов. По сути, прямохождение человека это уникальная и очень затратная для организма функция, которая требует особого рода двигательного механизма, и он у человека присутствует.

Любое физическое действие сводится к тому, что определенная группа мышц сгибается и разгибается, и для этого существуют специальные клетки «сгибатели и разгибатели».

В соответствующем отделе коры головного мозга формируется двигательный сигнал. Участвуют в этом ещё одни специализированные клетки, которые называют пирамидальными за их форму. Пирамидальные клетки составляют пирамидальный двигательный путь, по которому сигнал достигает спинного мозга.

За работу сгибателей и разгибателей, в результате деятельности которых происходит сокращение мышц, отвечают разные области коры мозга: формируется сигнал в области прецентральной извилины, а за работу сгибателей и разгибателей уже отвечают задние области обоих полушарий.

К каким мышцам присоединены мотонейроны

Ко всем мышечным волокнам присоединены свои мотонейроны. Вмести мотоклетка и мышечное волокно, к которому она присоединена, называются «двигательной единицей». Каждая такая единица функционирует независимо от других подобных единиц. И в каждую двигательную единицу входят мышечные волокна только одного типа.

Типы мышечных волокон:

  1.      Медленные оксидативные волокна.
  2.      Быстрые оксидативные волокна.
  3.      Быстрые гликолитические волокна. 

Особенности нервных клеток

Нейроны чем-то отдалённо напоминают колонию муравьев – их так же много и они разделены на разнообразные группы по специализации. Именно в разности этих специализаций и заключаются их специфические особенности и отличия.

Виды мотонейронов, их характеристика и локализация в коре головного мозга:

  •  Центральные иннервирующие сгибатели: локализуются в области прецентральной извилины и отвечают за сжатие (сокращение) скелетных мышц.
  •  Центральные иннервирующие разгибатели: локализуются в области заднего мозга и отвечают за расслабление скелетных мышц.
  •  Периферические альфа: клетки, передающие волокнам мышц команды к сокращению. Локализуются в передних рогах спинного мозга.
  •  Периферические гамма: клетки, отвечающие за тонус мышц. Локализуются там же, в передних рогах спинного мозга.
  •  Вставочные: присутствую во всех отделах ЦНС, и осуществляют роль коммуникации всех сигналов в ЦНС.

Сколько нейронов в организме

Количество нервных клеток только в человеческом мозге это величина космических масштабов. По результатам последних исследований, проведённых бразильскими физиологами, в головном мозге человека их насчитывается около 86 миллиардов.

Строение нейронов

Двигательная нервная клетка состоит из трёх условных частей: тело двигательного нейрона, один аксон и множество дендритов.

Дендриты это активные нервные окончания клеток, по которым устанавливается связь между нейронами, и проходят электрохимические импульсы. Нервы формируют между собой связи разной степени устойчивости.

А аксоны уже соединяются с другими клетками и передают им командные сигналы, образуя из себя всю нервную систему.

Часть связей формирует полностью автоматизированную систему по контролю множества физиологических процессов, которые человеку нет необходимости осознанно контролировать. Называют эти связи условными и безусловными рефлексами. Так же устойчивые нейронные цепи формируются в процессе любой деятельности, в том числе и мышления.

Чем чаще человек совершает одно и то же действие, думает одни и те же мысли, одинаково реагирует на одни и те же раздражители, тем устойчивей становятся связи, которые эти события формируют. Так формируются приобретённые рефлексы, полезные и вредные привычки, физические и психологические зависимости. Каждое обращение человека в русло привычного поведения только укрепляет связанные с этим нейронные цепи, и любая попытка в дальнейшем изменить свой характер, своё поведение будет встречать все больше сопротивления психики (где располагается корень любого пристрастия) и ощущение дискомфорта. Рефлекторная дуга

То самое большинство автоматизированных нейронных цепей, которые отвечают за бессознательную регулировку всех процессов в организме, по сути, и является рефлекторной дугой.

«Рефлекторная дуга» – это устойчивая нейронная связь, которая гарантированно срабатывает при определенных идентичных условиях. Например, отдёрнуть руку от горячего предмета это рефлекс, который исполняет связь.

Запускается рефлекс раздражителем – в данном примере любым горячем предметом.

Общий механизм рефлексивной деятельности следующий:

  1.      Сигнал о присутствии раздражителя передаётся на чувствительные нервные окончания и по связи из дендритов перенаправляется на анализ в головной мозг. Каждая область коры головного мозга отвечает за определённую специализацию. Соответственно и нервные окончания по всему телу привязаны к разным областям мозга, и каждый нейрон посылает сигналы исключительно в свой собственный командный центр.
  2.      После того, как дендриты первые отреагировали на раздражитель, эта реакция переходит на клетку.
  3.      Информация о события трансформируется в электрохимический импульс, который тут же передается по всей нервной системе в соответствующие отделы коры головного мозга.
  4.      Мозг анализирует полученную информацию и передает ответный импульс обратно по всей цепи с набором обязательных инструкций для клеток, как им вести себя в фазу ответной реакции и нужна ли эта фаза.
  5.      Фаза физической реакции на раздражитель, в которую клетки выполняют полученные инструкции.

Заключение

Человеческий организм был, есть и остаётся одной из самых больших неразгаданных тайн природы. А устройство человеческого организма, по своему совершенству многократно превосходит все наши самые передовые изобретения и разработки.

Основная причина, по которой человечество стремится изучить строение организма – это болезнь, тело человека такое же хрупкое, насколько и сильное.

Пройдет ещё ни одна сотня, а то и тысяча лет, прежде чем наша наука хотя бы немного приблизится к разгадке этого таинства.

 

Источник: https://mygenetics.ru/blog/nauka/dvigatelnye-neyrony/

Мотонейрон (двигательный нейрон) альфа и гамма: куда проводит нервный импульс, где находится

Двигательные нейроны воспринимают возбуждение от вставочных нейронов

Вставочный нейрон, известный так же как ассоциативный или интернейрон, присутствует только в тканях ЦНС, взаимосвязан исключительно с другими нервными клетками. Эта особенность отличает его от сенсорных или моторных аналогов.

Сенсорные взаимодействуют с другими системами организма, к примеру, с кожными рецепторами и органами чувств, когда преобразуют стимулы, поступающие из внешней среды в биоэлектрические сигналы.

Моторные клетки иннервируют волокна мышечной ткани и обеспечивают двигательную активность человека.

Функции

Ежесекундно через наш головной мозг проходит множество сигналов. Процесс не останавливается даже во сне. Организму нужно воспринимать окружающий мир, совершать движения, обеспечивать работу сердца, дыхательной, пищеварительной, мочеполовой системы и т.д. В организации всей этой деятельности участвуют две основные группы нейронов – чувствительные и двигательные.

Когда мы притрагиваемся к холодному или горячему и чувствуем температуру предмета – это заслуга именно чувствительных клеток. Они мгновенно передают полученную с периферии организма информацию. Так обеспечивается рефлекторная деятельность.

Нейроны формируют всю нашу ЦНС. Главные их задачи:

  1. получить информацию;
  2. передать ее по нервной системе.

Эти уникальные клетки способны мгновенно передавать электрические импульсы.

Чтобы обеспечить процесс жизнедеятельности, организм должен обрабатывать огромное количество информации, которая поступает к нему из окружающего мира, реагировать на любой признак изменения условий среды. Чтобы сделать этот процесс максимально эффективным, нейроны делятся по своим функциям на:

  • Чувствительные (афферентные) – это наши проводники в окружающий мир. Именно они воспринимают информацию извне, от органов чувств, и передают их в ЦНС. Особенность в том, что благодаря их контактной деятельности, мы чувствуем температуру, боль, давление, имеем другие чувства. Чувствительные клетки узкой специализации осуществляют передачу вкуса, запаха.
  • Двигательные (моторные, эфферентные, мотонейроны). Двигательные нейроны передают информацию через электрические импульсы от ЦНС к мышечным группам, железам.
  • Промежуточные (ассоциативные, интеркалярные, вставочные). Теперь подробнее разберемся, какую функцию выполняют вставочные нейроны, для чего они вообще нужны, в чем их отличие. Они располагаются между чувствительными и двигательными нейронами. Вставочные нейроны передают нервные импульсы от чувствительных волокон к двигательным. Они обеспечивают «общение» между эфферентными и афферентными нервными клетками. К ним нужно относиться, как к своеобразным природным «удлинителям», длинным полостям, которые помогают транслировать сигнал от сенсорного нейрона к двигательному. Без их участия это было бы невозможно сделать. В этом и заключается их функция.

Сами рецепторы – это специально отведенные для данной функции клетки кожи, мышц, внутренних органов, суставов. Рецепторы могут начинаться еще в клетках эпидермиса, слизистой. Они умеют точно улавливать мельчайшие изменения, как снаружи организма, так и внутри него.

Такие изменения могут быть физическими или химическими. Затем они молниеносно преображаются в специальные биоэлектрические импульсы и отправляются непосредственно к сенсорным нейронам.

Так сигнал проходит путь от периферии к центру организма, где мозг расшифровывает его значение.

[attention type=red]

Импульсы от органа в мозг проводят все три группы нейронов – двигательные, чувствительные и промежуточные. Из этих групп клеток и состоит нервная система человека. Такое строение позволяет реагировать на сигналы из окружающего мира. Они обеспечивают рефлекторную деятельность организма.

[/attention]

Если человек перестает чувствовать вкус, запах, снижается слух, зрение, это может указывать на нарушения в ЦНС. В зависимости от того, какие органы чувств задеты, невропатолог может определить, в каком отделе мозга возникли проблемы.

Есть две группы функций нервной системы:

1) Соматическая. Это сознательное управление мышцами скелета.

2) Вегетативная (автономная). Это неконтролируемое сознанием управление внутренними органами. Работа этой системы происходит, даже если человек находится в состоянии сна.

Смысл рисования нейрографики простыми словами

Простыми словами нейрографика – это способ рисования, в котором создаются уникальные и на первый взгляд абстрактные рисунки. Кроме того, этот метод рисования является арт-терапевтическим: он снимает напряжение и доставляет удовольствие. А через рисунок этот метод отражает работу подсознания человека.

Автор методики и все, кто этому методу обучают, утверждают, что с помощью нейрографики решаются разные проблемы: рисуя нейрографические рисунки, человек проводит работу с подсознанием. Избавляется от стрессов и проблем, достигает желаемых результатов в жизненных ситуациях.

Элементы нейрографики, что они обозначают в методе

Нейрографическая линия — первый и самый важный элемент в нейрографике. Рисуя линию, мы не можем заранее предположить ее направление: она не повторяет себя ни на каком участке бумаги. Вести линию нужно мягко, без острых углов, начиная из любого места. Нейрографическая линия напоминает ветви и корни деревьев, русла рек или молнию.

Три вида базовых фигур, которые постоянно встречаются в жизни людей, вызывая определенные реакции у человека. Эти фигуры независимо ни от чего у всех людей вызывают схожие ассоциации и эмоции.

Фигуры

Круг – это совершенная гармоничная фигура, это солнце, земля — некая защита и завершенность. С кругов рекомендуется новичкам нейрографики снимать ограничения мышления. Гармонизировать общее состояние и мягко войти в этот чудесный заразительный метод рисования. Круги даже в различных народностях являются символами оберега и защищенности.

Квадрат – это фигура стабильности, прочности, вечности. Вызывает ощущение надежности и баланса, снижает ощущение от тревоги и волнения. Когда есть желание зафиксировать результаты, стабилизировать свое состояние – то в рисунок вносятся именно квадраты.

Треугольник – это динамичная острая движущая фигура. Почему чаще всего треугольник ассоциируется с опасностью, конфликтностью, колкостью? Все просто – ведь это острые углы: нож, стрела, копье, клык. Но в то же время, фигура влиятельна для того, чтобы создать движение в своей жизни. Это динамика, мотивация, направление, прорыв, вектор движения. Без нее никак не обойтись.

Дополнительные элементы – спираль, как производная от кругов и звезда – это несколько треугольников.

Структура

Сенсорные нейроны чаще всего униполярные. Это означает, что они снабжены лишь одним раздваивающимся отростком. Он выходит из тела клетки (сомы) и выполняет сразу функции и аксона, и дендрита. Аксон – это вход, а дендрит чувствительного нейрона – выход. После возбуждения чувствительных сенсорных клеток по аксону и дендриту проходит биоэлектрический сигнал.

Встречаются и биполярные нервные клетки, которые имеют соответственно два отростка. Их можно обнаружить, например, в сетчатке, структурах внутреннего уха.

Тело чувствительной клетки по своей форме напоминает веретено. От тела отходит 1, а чаще 2 отростка (центральный и периферический).

Периферический по своей форме очень напоминает толстую длинную палочку. Он достигает поверхности слизистой или кожи. Такой отросток похож на дендрит нервных клеток.

Второй, противоположный отросток, отходит от противоположной части тела клетки и по форме напоминает тонкую нить, покрытую вздутиями (их называют варикозности). Это аналог нервного отростка нейрона. Данный отросток направлен в определенный отдел ЦНС и так разветвляется.

Чувствительные клетки еще называют периферическими. Их особенность в том, что они непосредственно находятся за периферической нервной системой и ЦНС, но без них работа данных систем немыслима. Например, обонятельные клетки размещены в эпителии слизистой носа.

Строение и виды нейронов

От сомы клетки (основы) в большинстве случаев отходит несколько толстых ответвлений (дендритов). Они не имеют четкой границы с телом и покрыты общей мембраной. По мере отдаления стволы становятся тоньше, происходит их ветвление. В итоге самые тонкие их части имеют вид заостренных нитей.

Особое строение нейрона (тонкий и длинный аксон) предполагает необходимость защиты его волокна на всей протяженности. Поэтому сверху он покрыт оболочкой из шванновских клеток, образующих миелин, с перехватами Ранвье между ними. Такая структура обеспечивает дополнительную защиту, изолирует проходящие импульсы, дополнительно питает и поддерживает нити.

Аксон берет свое начало с характерной возвышенности (холмика). Отросток в итоге также ветвится, но это происходит не по всей его протяженности, а ближе к окончанию, в местах соединения с другими нейронами или с тканями.

Как они работают

Функция чувствительного нейрона состоит в приеме сигнала от специальных рецепторов, расположенных на периферии организма, определении его характеристик. Импульсы воспринимаются периферическими отростками чувствительных нейронов, затем они передаются к их телу, а потом по центральным отросткам следуют непосредственно к ЦНС.

Источник: https://rptp-rd.ru/rasstrojstva/nejron-stroenie.html

Нейроны головного мозга – строение, классификация и проводящие пути

Двигательные нейроны воспринимают возбуждение от вставочных нейронов

Каждая структура в организме человека состоит из специфических тканей, присущих органу или системе. В нервной ткани – нейрон (нейроцит, нерв, неврон, нервное волокно).

Что такое нейроны головного мозга? Это структурно-функциональная единица нервной ткани, входящая в состав головного мозга.

Кроме анатомического определения нейрона, существует также функциональное – это возбуждающаяся электрическими импульсами клетка, способная к обработке, хранению и передаче на другие нейроны информации с помощью химических и электрических сигналов.

Строение нервной клетки не так сложно, в сравнении со специфическими клетками прочих тканей, также оно определяет её функцию.

Нейроцит состоит из тела (другое название – сома), и отростков – аксон и дендрит. Каждый элемент неврона выполняет свою функцию. Сома окружена слоем жирной ткани, пропускающая лишь жирорастворимые вещества.

Внутри тела располагается ядро и прочие органеллы: рибосомы, эндоплазматическая сеть и другие.

Кроме собственно нейронов, в головном мозге преобладают следующие клетки, а именно: глиальные клетки. Их часто называют мозговым клеем за их функцию: глия выполняет вспомогательную функцию для нейронов, обеспечивая окружение для них. Глиальная ткань предоставляет возможность нервной ткани регенерации, питания и помогает при создании нервного импульса.

Количество нейронов в головном мозге всегда интересовало исследователей в области нейрофизиологии. Так, численность нервных клеток варьировалось от 14 миллиардов до 100. Последними исследованиями бразильских специалистов выяснилось, что число нейронов составляет в среднем 86 миллиардов клеток.

Отростки

Инструментом в руках нейрона являются отростки, благодаря которым нейрон способен выполнять свою функцию передатчика и хранителя информации. Именно отростки формируют широкую нервную сеть, что позволяет человеческой психике раскрываться во всей ее красе.

Бытует миф, будто умственные способности человека зависят от количества нейронов или от веса головного мозга, но это не так: гениями становятся те люди, у которых поля и подполя мозга сильно развиты (больше в несколько раз).

За счет этого поля, отвечающие за определенные функции, смогут выполнять эти функции креативнее и быстрее.

[attention type=green]

Аксон – это длинный отросток нейрона, передающий нервные импульсы от сомы нерва к другим таким же клеткам или органам, иннервируемым определенным участком нервного столба.

[/attention]

Природа наделила позвоночных животных бонусом – миелиновым волокном, в структуре которого находятся шванновские клетки, между которыми располагаются небольшие пустые участки – перехваты Ранвье. По ним, как по лесенке, нервные импульсы перескакивают от одного участка к другому.

Такая структура позволяет в разы ускорить передачу информации (примерно до 100 метров в секунду). Скорость передвижения электрического импульса по волокну, не обладающего миелином, составляет в среднем 2-3 метра в секунду.

Иной вид отростков нервной клетки – дендриты. В отличие от длинного и цельного аксона, дендрит является короткой и разветвленной структурой. Этот отросток не участвует в передачи информации, а только в ее получении.

Так, к телу нейрона возбуждение поступает с помощью коротких веток дендритов. Сложность информации, которую дендрит способен получит, определяется его синапсами (специфические нервные рецепторы), а именно его диаметром поверхности.

Дендриты, благодаря огромному количеству своих шипиков, способны устанавливать сотни тысяч контактов с другими клетками.

Метаболизм в нейроне

Отличительной особенностью нервных клеток является их обмен веществ. Метаболизм в нейроците выделяется своей высокой скоростью и преобладанием аэробных (основанных на кислороде) процессов.

Такая черта клетки объясняется тем, что работа головного мозга чрезвычайно энергоемкая, и его потребность в кислороде велика.

Несмотря на то, что вес мозга составляет всего 2% от веса всего тела, его потребление кислорода составляет примерно 46 мл/мин, а это – 25% от общего потребления организма.

Главным источником энергии для ткани мозга, кроме кислорода, является глюкоза, где она проходит сложные биохимические преобразования. В конечном итоге из сахарных соединений высвобождается большое количество энергии. Таким образом, на вопрос о том, как улучшить нейронные связи головного мозга, можно ответить: употреблять продукты, содержащие соединения глюкозы.

Функции нейрона

Несмотря на относительно не сложное строение, нейрон обладает множеством функций, главные из которых следующие:

  • восприятие раздражения;
  • обработка стимула;
  • передача импульса;
  • формирование ответной реакции.

Функционально нейроны подразделяются на три группы:

Афферентные (чувствительные или сенсорные). Нейроны этой группы воспринимают, перерабатывают и отправляют электрические импульсы к центральной нервной системе. Такие клетки анатомически располагаются вне ЦНС, а в спинномозговых нейронных скоплениях (ганглиях), или таких же скоплениях черепно-мозговых нервов.Посредники (также эти нейроны, не выходящие за пределы спинного и головного мозга, называются вставочными). Предназначение этих клеток заключается в обеспечении контакта между нейроцитами. Они расположены во всех слоях нервной системы.Эфферентные (двигательные, моторные). Данная категория нервных клеток отвечает за передачу химических импульсов к иннервируемым органам-исполнителям, обеспечивая их работоспособность и задавая их функциональное состояние.

Кроме этого в нервной системе функционально выделяют еще одну группу – тормозящие (отвечают за торможения возбуждения клеток) нервы. Такие клетки противодействуют распространению электрического потенциала.

Классификация нейронов

Нервные клетки разнообразны как таковые, поэтому нейроны можно классифицировать, отталкиваясь от разных их параметров и атрибутов, а именно:

  • Форма тела. В разных отделах мозга располагаются нейроциты разной формы сомы:
    • звездчатые;
    • веретеновидные;
    • пирамидные (клетки Беца).
  • По количеству отростков:
    • униполярные: имеют один отросток;
    • биполярные: на теле располагаются два отростка;
    • мультиполярные: на соме подобных клеток располагаются три или более отростков.
  • Контактные особенности поверхности нейрона:
    • аксо-соматический. В таком случае аксон контактирует с сомой соседней клетки нервной ткани;
    • аксо-дендритический. Данный тип контакта предполагает соединение аксона и дендрита;
    • аксо-аксональный. Аксон одного нейрона имеет связи с аксоном другой нервной клетки.

Виды нейронов

Для того чтоб осуществлять осознанные движения нужно, чтобы импульс, образовавшийся в двигательных извилинах головного мозга смог достичь необходимых мышц. Таким образом, выделяют следующие виды нейронов: центральный мотонейрон и таковой периферический.

Первый вид нервных клеток берет свое начало у передней центральной извилины, расположенной спереди от самой большой борозды мозга – борозды Роланда, а именно от пирамидных клеток Беца. Далее аксоны центрального нейрона углубляются в полушария и проходят сквозь внутреннюю капсулу мозга.

Периферические же двигательные нейроциты образованы двигательными нейронами передних рогов спинного мозга. Их аксоны достигают различных образований, таких как сплетения, спинномозговые нервные скопления, и, главное – мышц-исполнителей.

Развитие и рост нейронов

Нервная клетка берет свое начало от клетки-предшественницы. Развиваясь, первые начинают отрастать аксоны, дендриты дозревают несколько позже.

Под конец эволюции отростка нейроцита у сомы клетки образуется маленькое уплотнение неправильной формы. Такое образование называется конусом роста. В нем содержатся митохондрии, нейрофиламенты и трубочки.

Постепенно созревают рецепторные системы клетки и расширяются синаптические области нейроцита.

Проводящие пути

Нервная система имеет свои сферы влияния по всему организму. С помощью проводящих волокон осуществляется нервная регуляция систем, органов и тканей. Мозг, благодаря широкой системе проводящих путей, полностью контролирует анатомическое и функциональное состояние всякой структуры организма.

Почки, печень, желудок, мышцы и другие – все это инспектирует головной мозг, тщательно и кропотливо координируя и регулируя каждый миллиметр ткани. А в случае сбоя – корректирует и подбирает подходящую модель поведения.

Таким образом, благодаря проводящим путям организм человека отличается автономностью, саморегуляцией и адаптивностью к внешней среде.

Проводящие пути головного мозга

Проводящий путь – это скопление нервных клеток, функция которых заключается в обмене информации между различными участками тела.

  • Ассоциативные нервные волокна. Эти клетки соединяют между собой различные нервные центры, что располагаются в одном полушарии.
  • Комиссуриальные волокна. Эта группа отвечает за обмен информацией между аналогичными центрами головного мозга.
  • Проекционные нервные волокна. Данная категория волокон сочленяет головной мозг со спинным.
  • Экстероцептивные пути. Они несут электрические импульсы от кожи и других органов чувств к спинному мозгу.
  • Проприоцептивные. Такая группа путей проводят сигналы от сухожилий, мышц, связок и суставов.
  • Интероцептивные проводящие пути. Волокна этого тракта берут начало из внутренних органов, сосудов и кишечных брыжеек.

Взаимодействие с нейромедиаторами

Нейроны разного местонахождения общаются между собой с помощью электрических импульсов химической природы. Так, что же лежит в основе их образования? Существуют так называемые нейромедиаторы (нейротрансмиттеры) – сложные химические соединения.

На поверхности аксона располагается нервный синапс – контактная поверхность. С одной стороны находится пресинаптическая щель, а с другой – постсинаптическая. Между ними находится щель – это и есть синапс.

На пресинаптической части рецептора располагаются мешочки (везикулы), содержащие определенное количество нейромедиаторов (квант).

[attention type=yellow]

Когда импульс подходит к первой части синапса, инициируется сложный биохимический каскадный механизм, в результате которого мешочки с медиаторами вскрываются, и кванты веществ-посредников плавно вытекают в щель.

[/attention]

На этом этапе импульс исчезает, и появляется вновь только тогда, когда нейромедиаторы достигают постсинаптической щели.

Тогда снова активируются биохимические процессы с открытиями ворот для медиаторов и те, действуя на мельчайшие рецепторы, преобразуются в электрический импульс, идущий далее в глубины нервных волокон.

Между тем выделяют разные группы этих самых нейромедиаторов, а именно:

  • Тормозные нейромедиаторы – группа веществ, осуществляющие тормозное действие на возбуждение. К ним относят:
    • гамма-аминомасляную кислоту (ГАМК);
    • глицин.
  • Возбуждающие медиаторы:
    • ацетилхолин;
    • дофамин;
    • серотонин;
    • норадреналин;
    • адреналин.

Восстанавливаются ли нервные клетки

Долгое время считалось, что нейроны не способны к делению.

Однако такое утверждение, согласно современным исследованиям, оказалось ложным: в некоторых отделах мозга происходит процесс нейрогенеза предшественников нейроцитов.

Кроме того, мозговая ткань обладает выдающимися способностями к нейропластичности. Известно множество случаев, когда здоровый участок мозга берет на себя функцию поврежденного.

Многие специалисты в области нейрофизиологии задавались вопросом о том, как восстановить нейроны головного мозга.

Свежими исследованиями американских ученых выяснилось: для своевременной и правильной регенерации нейроцитов не нужно употреблять дорогие препараты.

Для этого необходимо лишь составить верный режим сна и правильно питаться с включением в диету витаминов группы В и низкокалорийной пищи.

В случае если произойдет нарушение нейронных связей головного мозга, те способны восстановиться. Однако существуют серьезные патологии нервных связей и путей, такие как болезнь двигательного нейрона. Тогда необходимо обращаться к специализированной клинической помощи, где врачи-неврологи смогут выяснить причину патологии и составить правильное лечение.

Люди, ранее употреблявшие или употребляющие алкоголь, часто задают вопрос о том, как восстановить нейроны головного мозга после алкоголя. Специалист бы ответил, что для этого необходимо систематично работать над своим здоровьем.

В комплекс мероприятий входит сбалансированное питание, регулярное занятие спортом, умственная деятельность, прогулки и путешествия.

Доказано: нейронные связи головного мозга развиваются через изучение и созерцание категорически новой для человека информации.

[attention type=red]

В условиях перенасыщения лишней информацией, существования рынка фаст-фуда и сидящего образа жизни мозг качественно поддаётся различным повреждениям. Атеросклероз, тромботические образование на сосудах, хронические стрессы, инфекции, – все это – прямая дорога к засорению мозга.

[/attention]

Несмотря на это существуют лекарства, восстанавливающие клетки головного мозга. Основная и популярная группа – ноотропы.

Препараты данной категории стимулируют обмен веществ в нейроцитах, увеличивают стойкость к кислородной недостаточности и оказывают позитивный эффект на различные психические процессы (память, внимание, мышление).

Кроме ноотропов, фармацевтический рынок предлагает препараты, содержащие никотиновую кислоту, укрепляющие стенки сосудов средства и другие. Следует помнить, что восстановление нейронных связей головного мозга при приеме различных препаратов является долгим процессом.

Влияние алкоголя на головной мозг

Алкоголь оказывает негативное влияние на все органы и системы, а особенно – на головной мозг. Этиловый спирт легко проникает сквозь защитные барьеры мозга.

Метаболит алкоголя – ацетальдегид – серьезная угроза для нейронов: алькогольдегидрогеназа (фермент, обрабатывающий алкоголь в печени) в процессе переработки организмом тянет на себя больше количество жидкости, включая воду из мозга.

Таким образом, алкогольные соединения просто сушат мозг, вытаскивая из него воду, в результате чего структуры мозга атрофируются, и происходит отмирание клеток.

В случае одноразового употребления алкоголя такие процессы обратимы, чего нельзя утверждать о хроническом приеме спиртного, когда, кроме органических изменений, формируются устойчивые патохарактерологические черты алкоголика. Больше подробной информации о том, как происходит «Влияние алкоголя на мозг».

Не нашли подходящий ответ?
Найдите врача и задайте ему вопрос!

Источник: https://sortmozg.com/structure/nejrony-golovnogo-mozga

Что такое вставочный нейрон

Двигательные нейроны воспринимают возбуждение от вставочных нейронов

Вставочный нейрон, известный так же как ассоциативный или интернейрон, присутствует только в тканях ЦНС, взаимосвязан исключительно с другими нервными клетками. Эта особенность отличает его от сенсорных или моторных аналогов.

Сенсорные взаимодействуют с другими системами организма, к примеру, с кожными рецепторами и органами чувств, когда преобразуют стимулы, поступающие из внешней среды в биоэлектрические сигналы.

Моторные клетки иннервируют волокна мышечной ткани и обеспечивают двигательную активность человека.

Виды и характеристики нейронов

Нервные клетки, именуемые нейронами, принимают, отправляют и проводят биоэлектрические сигналы.

Различают эфферентные (двигательные) нейроны – это компоненты ЦНС, которые перенаправляют сигналы исполнительным органам, к примеру, скелетным мышцам.

Афферентные (чувствительные) нейроны – это такие клетки, которые воспринимают внешние и внутренние стимулы, что обеспечивает связь организма с внешней средой и реакции на изменение функциональной активности внутренних органов.

Вставочные клетки обеспечивают взаимосвязи в рамках общей нейрональной сети.

Нейроны всех типов (чувствительные, эфферентные, ассоциативные) являются функциональными единицами, поддерживающими деятельность нервной системы, они находятся во всех тканях организма, где играют роль связующих звеньев между рецепторными (воспринимающими раздражающие стимулы) и эффекторными органами, которые отвечают на раздражающие стимулы.

К эффекторным органам относят мышцы и железы, к рецепторным – органы чувств. Значение проводимых сигналов существенно различается в зависимости от вида клетки и ее роли в функционировании ЦНС.

К примеру, чувствительные, воспринимающие импульсы внешней среды, передают сигналы от кожных рецепторов и органов чувств в направлении головного мозга, двигательные нейроны перенаправляют команды, сформированные в мозге, вызывающие сокращение скелетных мышц и инициирующие движение.

[attention type=green]

Несмотря на разное значение биоэлектрических импульсов, их природа одинакова и заключается в изменении показателей электрического потенциала в области плазматической мембраны нервной клетки.

[/attention]

Механизм распространения нервных импульсов основан на способности электрического возмущения, появившегося в одном месте клетки, передаваться на другие участки.

При отсутствии факторов, усиливающих сигнал, импульсы затухают по мере удаления от источника возбуждения.

Сенсорный, известный так же как чувствительный – это афферентный нейрон, который проводит импульсы от дистальных участков организма к центральным отделам ЦНС.

К примеру, сенсорные образуют волокна, отходящие от светочувствительных клеток органов зрения.

Сигналы отходят от сетчатки глаза, направляясь по миллионам аксонов, принадлежащих структурам базальных ганглий, в направлении участка зрительной коры.

Чувствительный нейрон в совокупности с исполнительными (двигательными) нейронами образует простую рефлекторную дугу.

К примеру, коленный рефлекс – безусловная рефлекторная реакция растяжения, возникает в результате активности подобной рефлекторной дуги. Реакция в виде неконтролируемого разгибания голени происходит при механическом воздействии на сухожилие мышцы бедра, пролегающее под надколенником. Механизм реакции:

  1. Механическое воздействие на нервно-мышечные веретена, пролегающие в мышце-разгибателе бедра.
  2. Повышение интенсивности нервных сигналов в окончаниях, оплетающих нервно-мышечные веретена, вследствие их растяжения.
  3. Передача импульсов чувствительным нейронам, находящимся в спинальных ганглиях, посредством дендритов, отходящих от бедренного нерва.
  4. Передача импульсов от чувствительных клеток альфа-мотонейронам, пролегающим в передних рогах в границах спинного мозга.
  5. Передача сигнала от альфа-мотонейронов способным к сокращению мышечным волокнам бедренной мышцы.

В механизме коленного рефлекса принимают участие интернейроны, которые передают тормозящие импульсы мотонейронам мышц-сгибателей, и другие вставочные нейроны, к примеру, клетки Реншоу. В механизме коленного рефлекса также задействованы гамма-мотонейроны, которые регулируют интенсивность растяжения веретен.

В спинном мозге, образованном серым веществом, расположены нейроны трех типов – моторные, вставочные, вегетативные. Причем вегетативные находятся в висцеральных (относящихся к внутренним органам) ядрах.

Эти клетки взаимодействуют с афферентными (восходящие проводящие пути, которые передают импульсы от периферических рецепторов в центральные зоны ЦНС) волокнами, отвечающими за общую висцеральную чувствительность.

[attention type=yellow]

Висцеральные афференты проводят нервные сигналы (чаще болезненные или рефлекторные ощущения) от внутренних органов, элементов кровеносной системы, желез к соответствующим зонам ЦНС. Висцеральные афференты находятся в составе вегетативного отдела нервной системы. Рефлекторные дуги в рамках вегетативного отдела ЦНС отличаются строением от дуг соматического отдела.

[/attention]

Эфферентные компоненты (нисходящие проводящие пути, которые передают импульсы от корковых и подкорковых зон головного мозга к периферическим участкам) образованы нейронами двух видов – вставочными и эффекторными (двигательными). Вставочные находятся в ядрах, принадлежащих вегетативному отделу ЦНС. Название «вставочный» обусловлено расположением между чувствительным и двигательным нейроном.

Чувствительные

Чувствительный нейрон – это такой компонент нервной системы, который передает в мозг информацию о раздражителях, воздействующих на определенный участок тела. Примером раздражителей могут служить факторы: солнечный свет, механическое воздействие (удар, касание), действие химического вещества. Чувствительные нейроны расположены в ганглиях мозга – спинного и головного.

Связь, образованная с чувствительным нейроном, может провоцировать возбуждение или торможение, которое направляется по нервным волокнам к корковым отделам мозга.

По мере возрастания уровня сенсорных путей, передаваемая информация перерабатывается с идентификацией важных признаков.

Чувствительные относятся к псевдоуниполярным нейронам – их аксон и дендриты отходят от тела вместе, впоследствии разделяются и находятся в спинном, головном мозге (аксон) и в периферических отделах тела (дендриты).

Вставочные

Вставочные нейроны передают преобразованные нервные импульсы, полученные в результате обработки сенсорной информации, поступившей из разных источников, к примеру, от органов зрения и кожных рецепторов. В результате переработанная информация становится исходными данными для формирования адекватных двигательных команд.

Двигательные

Двигательные нервные клетки бывают двух видов – крупные и мелкие. В первом случае речь идет об α-мотонейронах, во втором – о γ-мотонейронах. Альфа-мотонейроны присутствуют в базальных ядрах латеральной (ближе к боковой плоскости) и медиальной (ближе к срединной плоскости) локализации. Это самые крупные клетки, присутствующие нервной ткани.

Их аксоны взаимодействуют с поперечнополосатыми волокнами, содержащимися в составе скелетных мышц. В результате образуются синапсы (места передачи нервных сигналов). Аксоны альфа-мотонейронов взаимосвязаны со вставочными аналогами, известными так же как клетки Реншоу, что приводит к формированию коллатеральных путей и тормозных синапсов в спинном мозге.

Гамма-мотонейроны находятся в составе нервно-мышечного веретена, которое представляет собой сложный рецептор, состоящий из нервных окончаний (афферентных, эфферентных). функция нервно-мышечных веретен заключается в регуляции силы и скорости сокращения или растяжения мускулатуры скелета.

Строение и функции

Вставочная клетка состоит из тела, от которого отходят единичный аксон и дендриты. Дендриты вставочных клеток чаще короткие. Их аксоны вариативно переходят в границах спинного мозга из задних рогов в передние (замыкают дугу на уровне отрезка спинного мозга) или распространяются в область других уровней мозговых структур – спинных, головных.

Одна из функций вставочных нейронов – торможение интенсивности некоторых сигналов.

К примеру, интернейроны неокортекса (новой коры, отвечающей за высшие психические функции – сенсорное восприятие, осознанное мышление, произвольную двигательную активность, речь) избирательно понижают интенсивность части сигналов, поступающих из таламуса, чтобы предотвратить необходимость отвлекаться на посторонние, малозначащие стимулы. Если импульсация, спровоцированная внешним стимулом, недостаточно сильна, она может затухнуть, не доходя до коркового слоя головного мозга.

[attention type=red]

Область влияния вставочных клеток ограничена индивидуальными особенностями строения – длина отростков-аксонов, количество коллатеральных ответвлений. Обычно вставочные оснащены аксонами с терминалями (концевой участок, представленный синаптическим окончанием – местом контакта с другими клетками), заканчивающимися в пределах одного центра, что обуславливает интеграцию в рамках группы.

[/attention]

Вставочные нейроны замыкают рефлекторные дуги, они воспринимают возбуждение от афферентных нервных структур, перерабатывают данные и передают их двигательным нейронам. Ассоциативные клетки играют ведущую роль в формировании нейрональных сетей, где продлевается срок хранения поступающей и переработанной информации.

Порядок взаимодействия

Рефлекторная регуляция функций организма в интерпретированной, упрощенной форме описана в учебнике биологии для 8-го класса. Вставочные, сенсорные и двигательные нейроны взаимосвязаны. Характер взаимодействия зависит от вида функций нервной системы. Примерный порядок взаимодействия в случае функций чувствительных нейронов, которые локализованы в области кожных покровов:

  1. Восприятие внешнего стимула нервным рецептором, расположенным в коже.
  2. Передача стимула сенсорными клетками к зонам головного мозга. Обычно сигнал проходит через 2 синапса (в спинном мозге и таламусе), затем попадает в сенсорную зону коры полушарий.
  3. Преобразование импульса в универсальную форму.
  4. Передача преобразованного импульса во все корковые отделы полушарий при помощи вставочных нейронов, которые находятся только в ЦНС.

Произвольные движения мышц осуществляются благодаря активности мотонейронов, находящихся в корковой двигательной зоне. Мотонейроны инициируют движение – сигнал поступает в скелетные мышцы по эфферентным волокнам.

В то время как основные сигналы, отправленные мотонейронами, поступают к мышечной ткани, возбуждение распространяется на другие участки мозга, к примеру, на область оливы и мозжечка, где происходит тонкая настройка планирующегося действия.

Вставочные клетки играют роль посредников, обеспечивающих связь между эфферентными и афферентными нервными клетками.

Источник: https://golovmozg.ru/struktura/vstavochnyy-neyron

Нервные ткани

Двигательные нейроны воспринимают возбуждение от вставочных нейронов

Группа нервных тканей объединяет ткани эктодермального происхождения, которые в совокупности образуют нервную систему и создают условия для реализации ее многочисленных функций. Обладают двумя основными свойствами: возбудимостью и проводимостью.

Нейрон

Структурно-функциональной единицей нервной ткани является нейрон (от др.-греч. νεῦρον — волокно, нерв) – клетка с одним длинным отростком – аксоном, и одним/несколькими короткими – дендритами.

Спешу сообщить, что представление, будто короткий отросток нейрона – дендрит, а длинный – аксон, в корне неверно. С точки зрения физиологии правильнее дать следующие определения: дендрит – отросток нейрона, по которому нервный импульс перемещается к телу нейрона, аксон – отросток нейрона, по которому импульс перемещается от тела нейрона.

Отростки нейронов проводят сгенерированные нервные импульсы и передают их другим нейронам, эффекторам (мышцы, железы), благодаря чему мышцы сокращаются или расслабляются, а секреция желез усиливается или уменьшается.

Миелиновая оболочка

Отростки нейронов покрыты жироподобным веществом – миелиновой оболочкой, которая обеспечивает изолированное проведение нервного импульса по нерву. Если бы не было миелиновой оболочки (вообразите!) нервные импульсы распространялись бы хаотично, и, когда мы хотели сделать движение рукой, двигалась бы нога.

Существует болезнь, при которой собственные антитела уничтожают миелиновую оболочку (случаются и такие сбои в работе организма.) Эта болезнь – рассеянный склероз, по мере прогрессирования приводит к разрушению не только миелиновой оболочки, но и нервов – а значит, происходит атрофия мышц и человек постепенно становится обездвиженным.

Нейроглия

Вы уже убедились, насколько значимы нейроны, их высокая специализация приводит к возникновению особого окружения – нейроглии.

Нейроглия – вспомогательная часть нервной системы, которая выполняет ряд важных функций:

  • Опорная – поддерживает нейроны в определенном положении
  • Изолирующая – ограничивает нейроны от соприкосновения с внутренней средой организма
  • Регенераторная – в случае повреждения нервных структур нейроглия способствует регенерации
  • Трофическая – с помощью нейроглии осуществляется питание нейронов: напрямую с кровью нейроны не контактируют

В состав нейроглии входят разные клетки, их в десятки раз больше чем самих нейронов. В периферическом отделе нервной системы миелиновая оболочка, изученная нами, образуется именно из нейроглии – шванновских клеток. Между ними хорошо заметны перехваты Ранвье – участки, лишенные миелиновой оболочки, между двумя смежными шванновскими клетками.

Синапс

На схеме выше вы наверняка заметили новый термин – синапс. Синапсом называют место контакта между двумя нейронами или между нейроном и эффектором (органом-мишенью). В синапсе нервный импульс “преобразуется” в химический: происходит выброс особых веществ – нейромедиаторов (наиболее известный – ацетилхолин) в синаптическую щель.

Разберем строение синапса на схеме. Его составляют пресинаптическая мембрана аксона, рядом с которой расположены везикулы (лат. vesicula — пузырек) с нейромедиатором внутри (ацетилхолином). Если нервный импульс достигает терминали (окончания) аксона, то везикулы начинают сливаться с пресинаптической мембраной: ацетилхолин поступает наружу, в синаптическую щель.

Попав в синаптическую щель, ацетилхолин связывается с рецепторами на постсинаптической мембране, таким образом, возбуждение передается другому нейрону, и он генерирует нервный импульс. Так устроена нервная система: электрический путь передачи сменяется химическим (в синапсе).

Яд кураре

Гораздо интереснее изучать любой предмет на примерах, поэтому я постараюсь как можно чаще радовать вас ими ;) Не могу утаить историю о яде кураре, который используют индейцы для охоты с древних времен.

Этот яд блокирует ацетилхолиновые рецепторы на постсинаптической мембране, и, как следствие, химическая передача возбуждения с одного нейрона на другой становится невозможна. Это приводит к тому, что нервные импульсы перестают поступать к мышцам организма, в том числе к дыхательным мышцам (межреберным, диафрагме), вследствие чего дыхание останавливается и наступает смерть животного.

Нервы и нервные узлы

Собираясь вместе, аксоны образуют нервные пучки. Нервные пучки объединяются в нервы, покрытые соединительнотканной оболочкой. В случае, если тела нервных клеток концентрируются в одном месте за пределами центральной нервной системы, их скопления называют нервные узлы – или ганглии (от др.-греч. γάγγλιον — узел).

В случае сложных соединений между нервными волокнами говорят о нервных сплетениях. Одно из наиболее известных – плечевое сплетение.

Болезни нервной системы

Неврологические болезни могут развиваться в любой точке нервной системы: от этого будет зависеть клиническая картина. В случае повреждения чувствительного пути пациент перестает чувствовать боль, холод, тепло и другие раздражители в зоне иннервации пораженного нерва, при этом движения сохранены в полном объеме.

Если повреждено двигательное звено, движение в пораженной конечности будет невозможно: возникает паралич, но чувствительность может сохраняться.

Существует тяжелое мышечное заболеванием – миастения (от др.-греч. μῦς — «мышца» и ἀσθένεια — «бессилие, слабость»), при котором собственные антитела разрушают мотонейроны.

Постепенно любые движения мышцами становятся для пациента все труднее, становится тяжело долго говорить, повышается утомляемость. Наблюдается характерный симптом – опущение верхнего века. Болезнь может привести к слабости диафрагмы и дыхательных мышц, вследствие чего дыхание становится невозможным.

Источник: https://studarium.ru/article/80

Будь здоров
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: