Гидравлическое сопротивление с увеличением радиуса сосуда

Гидравлическое сопротивление

Гидравлическое сопротивление с увеличением радиуса сосуда

24 Июн 2018
Рубрика: Теплотехника | 19 комментариев

Выполнение расчета гидравлического сопротивления отдельного трубопровода и всей системы в комплексе является ключевой задачей в гидравлике,  решение которой позволяет подобрать сечения труб и насос с необходимыми значениями давления и расхода в рабочем режиме.

В одной из ранних статей на блоге рассмотрен простой пример расчета трубопровода с параллельными участками с использованием понятия «характеристика сопротивления». В конце статьи я анонсировал: «Можно существенно  повысить точность метода…». Под этой фразой подразумевалось учесть зависимость характеристик сопротивления от расхода более точно.

В том расчете характеристики сопротивлений выбирались из таблиц по диаметру трубы и по предполагаемому расходу. Полковов Вячеслав Леонидович написал взамен таблиц пользовательские функции в Excel для более точного вычисления гидравлических сопротивлений, которые любезно предоставил для печати.

Термины «характеристика сопротивления» и «гидравлическое сопротивление» обозначают одно и то же.

Краткая теория

В упомянутой выше статье теория вкратце рассматривалась. Освежим в памяти основные моменты.

Движение жидкостей по трубам и каналам сопровождается потерей давления, которая складывается из потерь на трение по длине трубопровода и потерь в местных сопротивлениях – в изгибах, отводах, сужениях, тройниках, запорной арматуре и других элементах.

В гидравлике в общем случае потери давления вычисляются по формуле Вейсбаха:

∆Р=ζ·ρ·w²/2, Па, где:

  • ζ – безразмерный коэффициент местного сопротивления;
  • ρ – объёмная плотность жидкости, кг/м3;
  • w – скорость потока жидкости, м/с.

Если с плотностью и скоростью всё более или менее понятно, то определение коэффициентов местных сопротивлений – достаточно непростая задача!

Как было отмечено выше, в гидравлических расчетах принято разделять два вида потерь давления в сетях трубопроводов.

  1. В первом случае «местным сопротивлением» считается трение по длине прямого участка трубопровода. Перепад давления для потока в круглой трубе рассчитывается по формуле Дарси-Вейсбаха:

∆Ртр=ζтр·ρ·w²/2=λ·L·ρ·w²/(2·D), Па, где:

  • L – длина трубы, м;
  • D – внутренний диаметр трубы, м;
  • λ – безразмерный коэффициент гидравлического трения (коэффициент Дарси).

Таким образом, при учете сопротивления трению коэффициент потерь – коэффициент местного сопротивления – и коэффициент гидравлического трения связаны для круглых труб зависимостью:

ζтр=λ·L/D

  1. Во втором случае потери давления в местных сопротивлениях вычисляются по классической формуле Вейсбаха:

∆Рм=ζм·ρ·w²/2, Па

Коэффициенты местных сопротивлений определяются для каждого вида «препятствия» по индивидуальным эмпирическим формулам, полученным из практических опытов.

Выполним ряд математических преобразований. Для начала выразим скорость потока через массовый расход жидкости:

w=G/(ρ·π·D²/4), м/с, где:

  • G – расход жидкости, кг/с;
  • π – число Пи.

Тогда:

∆Ртр=8·λ·L·G²/(ρ·π²·D5), Па;

∆Рм=8·ζм·G²/(ρ·π²·D4), Па.

Введем понятие гидравлических сопротивлений:

Sтр=λ·L·/(ρ·π²·D5), Па/(кг/с)²;

Sм=8·ζм·/(ρ·π²·D4), Па/(кг/с)².

И получим удобные простые формулы для вычисления потерь давления при прохождении жидкости в количестве G через эти гидравлические сопротивления:

∆Ртр=Sтр·G², Па;

∆Рм=Sм·G², Па.

Размерность гидравлического сопротивления (Па/(кг/с)²) определена массовой скоростью (кг/с) движения жидкости, а физические процессы в транспортных системах зависят от её объёмной скорости (м3/с), что учтено в формулах присутствием объёмной плотности ρ транспортируемой жидкости.

Для удобства последующих расчётов целесообразно введение понятия «гидравлическая проводимость» – а.

Для последовательного и параллельного соединений гидравлических сопротивлений справедливы формулы:

Sпосл=S1+S2+…+Sn, Па/(кг/с)²;

Sпар=1/(а1+a2+…+an, Па/(кг/с)²;

ai=(1/Si)0,5, (кг/с)/Па0,5.

Коэффициент гидравлического трения

Для определения гидравлического сопротивления от трения о стенки трубы Sтр необходимо знать параметр Дарси λ – коэффициент гидравлического трения по длине.

В технической литературе приводится значительное количество формул разных авторов, по которым выполняется вычисление коэффициента гидравлического трения в различных диапазонах значений числа Рейнольдса.

Обозначения в таблице:

  • Re – число Рейнольдса;
  • k – эквивалентная шероховатость внутренней стенки трубы (средняя высота выступов), м.

В [1] приведена еще одна интересная формула расчета коэффициента гидравлического трения:

λ=0,11·[(68/Re+k/D+(1904/Re)14)/(115·(1904/Re)10+1)]0,25

Вячеслав Леонидович выполнил проверочные расчеты и выявил, что вышеприведенная формула является наиболее универсальной в широком диапазоне чисел Рейнольдса!

Значения, полученные по этой формуле чрезвычайно близки значениям:

  • функции λ=64/Re для зоны ламинарного характера потока в диапазоне 10

Источник: http://al-vo.ru/teplotekhnika/gidravlicheskoe-soprotivlenie.html

Коэффициент гидравлического сопротивления

Гидравлические потери выражают либо в потерях напора Δh в линейных единицах столба среды, либо в единицах давления ΔP:

Δh= ΔP/(ρg)

где ρ — плотность среды, g — ускорение свободного падения.

В производственной практике перемещение жидкости в потоках связано с необходимостью преодолеть гидравлическое сопротивление трубы по длине потока, а также различные местные сопротивления:
  Поворотов
  Диафрагм
  Задвижек
  Вентилей
  Кранов
  Различных ответвлений и тому подобного

На преодоление местных сопротивлений затрачивается определенная часть энергии потока, которую часто называют потерей напора на местные сопротивления. Обычно эти потери выражают в долях скоростного напора, соответствующего средней скорости жидкости в трубопроводе до или после местного сопротивления.

[attention type=yellow]

Аналитически потери напора на местные гидравлические сопротивления выражаются в виде.

[/attention]

hr = ξ υ2 / (2g)

где ξ – коэффициент местного сопротивления (обычно определяется опытным путем).

Данные о значении коэффициентов различных местных сопротивлений приводятся в соответствующих справочниках, учебниках и различных пособиях по гидравлике в виде отдельных значений коэффициента гидравлического сопротивления, таблиц, эмпирических формул, диаграмм и т.д.

Исследование потерь энергии (потери напора насоса), обусловленных различными местными сопротивлениями, ведутся уже более ста лет.

В результате экспериментальных исследований, проведенных в России и за рубежом в различное время, получено огромное количество данных, относящихся к разнообразнейшим местным сопротивлениям для конкретных задач.

Что же касается теоретических исследований, то им пока поддаются только некоторые местные сопротивления.

В этой статье будут рассмотрены некоторые характерные местные сопротивления, часто встречающиеся на практике.

Местные гидравлические сопротивления

Как уже было написано выше, потери напора во многих случаях определяются опытным путем. При этом любое местное сопротивление похоже на сопротивление при внезапном расширении струи. Для этого имеется достаточно оснований, если учесть, что поведение потока в момент преодоления им любого местного сопротивления связано с расширением или сужением сечения.

Гидравлические потери на внезапное сужение трубы

Сопротивление при внезапном сужении трубы сопровождается образованием в месте сужения водоворотной области и уменьшения струи до размеров меньших, чем сечение малой трубы. Пройдя участок сужения, струя расширяется до размеров внутреннего сечения трубопровода. Значение коэффициента местного сопротивления при внезапном сужении трубы можно определить по формуле.

ξвн. суж = 0,5(1- (F2/F1))

Значение коэффициента ξвн. суж от значения отношения (F2/F1)) можно найти в соответствующем справочнике по гидравлике.

Гидравлические потери при изменении направления трубопровода под некоторым углом

[attention type=red]

В этом случае вначале происходит сжатие, а затем расширение струи вследствие того, что в месте поворота поток по инерции как бы отжимается от стенок трубопровода. Коэффициент местного сопротивления в этом случае определяется по справочным таблицам или по формуле

[/attention]

ξ поворот = 0,946sin(α/2) + 2.047sin(α/2)2

где α – угол поворота трубопровода.

Местные гидравлические сопротивления при входе в трубу

В частном случае вход в трубу может иметь острую или закругленную кромку входа. Труба, в которую входит жидкость, может быть расположена под некоторым углом α к горизонтали.

Наконец, в сечении входа может стоять диафрагма, сужающая сечение. Но для всех этих случаев характерно начальное сжатие струи, а затем её расширение.

Таким образом и местное сопротивление при входе в трубу может быть сведено к внезапному расширению струи.

Если жидкость входит в цилиндрическую трубу с острой кромкой входа и труба наклонена к горизонту под углом α, то величину коэффициента местного сопротивления можно определить по формуле Вейсбаха:

ξвх = 0,505 + 0,303sin α + 0,223 sin α2

Местные гидравлические сопротивления задвижки

На практике часто встречается задача расчета местных сопротивлений, создаваемых запорной арматурой, например, задвижками, вентилями, дросселями, кранами, клапанами и т.д. В этих случаях проточная часть, образуемая разными запорными приспособлениями, может иметь совершенно различные геометрические формы, но гидравлическая сущность течения при преодолении этих сопротивлений одинакова.

Гидравлическое сопротивление полностью открытой запорной арматуры равно

ξвентиля = от 2,9 до 4,5

Величины коэффициентов местных гидравлических сопротивлений для каждого вида запорной арматуры можно определить по справочникам.

Гидравлические потери диафрагмы

Процессы, происходящие в запорных устройствах, во многом похожи на процессы при истечении жидкости через диафрагмы, установленные в трубе.

В этом случае также происходит сужение струи и последующее её расширение.

[attention type=green]

Степень сужения и расширения струи зависит от ряда условий:
  режима движения жидкости
  отношения диаметров отверстия диафрагмы и трубы
  конструктивных особенностей диафрагмы.

[/attention]

Для диафрагмы с острыми краями:

ξдиафр = d02 / D02

Местные гидравлические сопротивления при входе струи под уровень жидкости

Преодоление местного сопротивления при входе струи под уровень жидкости в достаточно большой резервуар или в среду, не заполненную жидкостью, связано с потерей кинетической энергии. Следовательно, коэффициент сопротивления в этом случае равен единице.

ξвхода = 1

о гидравлическом сопротивлении

На преодоление гидравлических потерь затрачивается работа различных устройств (насосов и гидравлических машин)

Для снижения влияния гидравлических потерь рекомендуется в конструкции трассы избегать использования узлов способствующих резким изменениям направления потока и стараться применять в конструкции тела обтекаемой формы.

Даже применяя абсолютно гладкие трубы приходится сталкиваться с потерями: при ламинарном режиме течения(по Рейнольдсу) шероховатость стенок не оказывает большого влияния, но при переходе к турбулентному режиму течения как правило возрастает и гидравлическое сопротивление трубы.

В дополнение к статье “Гидравлическое сопротивление” Вам может быть интересно:

Источник: https://www.nektonnasos.ru/article/gidravlika/gidravlicheskoe-soprotivlenie/

Будь здоров
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: