Глюкагон инициирует распад гликогена в печени

Содержание
  1. Что происходит в печени с избытком глюкозы? Схема гликогенеза и гликогенолиза
  2. Какую роль играет печень в накоплении углеводов в организме?
  3. Что происходит с углеводами в организме?
  4. Схема синтеза гликогена
  5. Биохимия гликогенолиза
  6. Биохимия глюконеогенеза (путь получения глюкозы)
  7. Схема пути регулирования гликогенеза и гликогенолиза
  8. Синтез и распад гликогена реципрокны
  9. Способы активации синтазы гликогена
  10. Способы активации фосфорилазы гликогена
  11. Ковалентная модификация фосфорилазы
  12. Аденилатциклазный способ активации фосфорилазы гликогена
  13. Кальций-зависимая активация
  14. Аллостерическая (метаболическая) активация
  15. Глюкагон: что это за гормон и какие функции выполняет?
  16. Глюкагон – что это, какие функции выполняет?
  17. Нехватка и избыток активного вещества
  18. Анализ на глюкагон
  19. Использование глюкагона для лечения
  20. Глюкагон инициирует распад гликогена в печени
  21. Значение глюконеогенеза
  22. Регуляция глюконеогенеза
  23. 1.8. Пентозофосфатный путь (пфп)
  24. Глюкагон и инсулин: функции и взаимосвязь гормонов
  25. Синтез глюкагона и инсулина
  26. Эффекты инсулина
  27. Роль инсулина в транспорте глюкозы в клетки
  28. Роль инсулина в обмене белков
  29. Роль инсулина в жировом обмене
  30. Функции глюкагона
  31. Взаимосвязь гормонов
  32. Синтез гликогена в печени: что такое распад и жировые включения гликогена?
  33. Синтез и превращение гликогена в печени
  34. Что влияет на уровень гликогена?
  35. Нарушение синтеза и расщепления гликогена в печени

Что происходит в печени с избытком глюкозы? Схема гликогенеза и гликогенолиза

Глюкагон инициирует распад гликогена в печени

Глюкоза является главным энергетическим материалом для функционирования человеческого тела. В организм она поступает с пищей в виде углеводов. На протяжении многих тысячелетий человек претерпевал массу эволюционных изменений.

Одним из важных приобретенных умений стала способность организма впрок запасать энергетические материалы на случай голода и синтезировать их из других соединений.

Избытки углеводов аккумулируются в организме при участии печени и сложных биохимических реакций. Все процессы накопления, синтеза и использования глюкозы регулируются гормонами.

Какую роль играет печень в накоплении углеводов в организме?

Существуют следующие пути для использования глюкозы печенью:

  1. Гликолиз. Сложный многоступенчатый механизм окисления глюкозы без участия кислорода, в результате которого образуется универсальные источники энергии: АТФ и НАДФ — соединения, обеспечивающие энергией протекание всех биохимических и обменных процессов в организме;
  2. Запасание в виде гликогена при участии гормона инсулина. Гликоген – неактивная форма глюкозы, которая может накапливаться и сберегаться в организме;
  3. Липогенез. Если глюкозы поступает больше, чем необходимо даже для образования гликогена, начинается синтез липидов.

Роль печени в углеводном обмене огромна, благодаря ей в организме постоянно присутствует запас углеводов, жизненно необходимых организму.

Что происходит с углеводами в организме?

Основная роль печени — регуляция углеводного обмена и глюкозы с последующим депонированием гликогена в гепатоцитах человека.

Особенностью является превращение сахара под воздействием узкоспециальных ферментов и гормонов в особую его форму, этот процесс происходит исключительно в печени (необходимое условие потребления её клетками).

Эти преобразования ускоряются ферментами гексо- и глюкокиназой при понижении уровня содержания сахара.

[attention type=yellow]

В процессе пищеварения (а углеводы начинают расщепляться сразу после попадания еды в ротовую полость) содержание глюкозы в крови повышается, вследствие чего происходит ускорение реакций, направленных на депонирование излишков. Тем самым предупреждается возникновение гипергликемии во время приёма пищи.

[/attention]

Сахар из крови с помощью ряда биохимических реакций в печени преобразуется в неактивное его соединение – гликоген и накапливается в гепатоцитах и мышцах. При наступлении энергетического голода с помощью гормонов организм способен высвобождать гликоген из депо и синтезировать из него глюкозу — это основной путь получения энергии.

Схема синтеза гликогена

Излишки глюкозы в печени используются в производстве гликогена под воздействием гормона поджелудочной железы — инсулина. Гликоген (животный крахмал) — это полисахарид, особенностью строения которого является древообразная структура. Запасают его гепатоциты в форме гранул.

гликогена в печени человека может увеличиваться до 8% от массы клетки после принятия углеводистой еды. Распад нужен, как правило, для удержания уровня глюкозы в процессе пищеварения.

При длительном голодании содержание гликогена понижается почти до нуля и снова синтезируется во время пищеварения.

Биохимия гликогенолиза

Если у организма повышается потребность в глюкозе — гликоген начинает распадаться. Механизм преобразования происходит, как правило, между приемами пищи, и ускоряется при мышечных нагрузках.

Голодание (отсутствие приема пищи в течение не менее 24 часов) приводит к практически полному распаду гликогена в печени. Но при регулярном питании его запасы полностью восстанавливаются.

Подобное аккумулирование сахара может существовать очень долго, до возникновения потребности в распаде.

Биохимия глюконеогенеза (путь получения глюкозы)

Глюконеогенез – процесс синтеза глюкозы из неуглеводных соединений. Его главная задача — удержание стабильного содержания углеводов в крови при недостатке гликогена или тяжёлой физической работе. Глюконеогенез обеспечивает продукцию сахара до 100 грамм в сутки. В состоянии углеводного голода организм способен синтезировать энергию с альтернативных соединений.

Для использования пути гликогенолиза при необходимости получения энергии нужны следующие вещества:

  1. Лактат (молочная кислота) – синтезируется при распаде глюкозы. После физических нагрузок возвращается в печень, где снова преобразуется в углеводы. Благодаря этому молочная кислота постоянно участвует в образовании глюкозы;
  2. Глицерин – результат распада липидов;
  3. Аминокислоты – синтезируются при распаде мышечных белков и начинают участвовать в образовании глюкозы при истощении запасов гликогена.

Основное количество глюкозы производится в печени (более 70 грамм в сутки). Главной задачей глюконеогенеза является снабжение сахаром мозга.

В организм попадают углеводы не только в виде глюкозы — это может быть и манноза, содержащаяся в цитрусовых. Манноза в результате каскада биохимических процессов преобразуется в соединение, подобное глюкозе. В этом состоянии она вступает в реакции гликолиза.

Схема пути регулирования гликогенеза и гликогенолиза

Путь синтеза и распада гликогена регулируется такими гормонами:

  • Инсулин – гормон поджелудочной железы белковой природы. Он понижает содержание сахара в крови. В целом особенностью гормона инсулина является влияние на обмен гликогена, в противоположность глюкагону. Инсулин регулирует дальнейший путь преобразования глюкозы. Под его влиянием происходит транспортировка углеводов в клетки организма, а из их избытков — образование гликогена;
  • Глюкагон – гормон голода – вырабатывается поджелудочной железой. Имеет белковую природу. В противоположность инсулину, ускоряет распад гликогена, и способствует стабилизации уровня глюкозы в крови;
  • Адреналин – гормон стресса и страха. Его выработка и выделение происходят в надпочечниках. Стимулирует выброс избытка сахара из печени в кровь, для снабжения тканей «питанием» в стрессовой ситуации. Так же, как и глюкагон, в отличие от инсулина, ускоряет катаболизм гликогена в печени.

Перепад количества углеводов в крови активирует производство гормонов инсулина и глюкагона, смену их концентрации, что переключает распад и образование гликогена в печени.

Одной из важных задач печени является регулирование пути синтеза липидов. Липидный обмен в печени включает производство разных жиров (холестерина, триацилглицеридов, фосфолипидов, и др.). Эти липиды поступают в кровь, их присутствие обеспечивает энергией ткани организма.

Печень непосредственно участвует в поддержании энергетического баланса в организме. Ее заболевания способны привести к нарушению важных биохимических процессов, в результате чего будут страдать все органы и системы. Необходимо тщательно следить за своим здоровьем и при необходимости не откладывать визит к врачу.

Источник: http://MoyaPechen.ru/liver/chto-proishodit-v-pecheni-s-izbytkom-glukozy-shema-glikogeneza-i-glikogenoliza.html

Синтез и распад гликогена реципрокны

Глюкагон инициирует распад гликогена в печени

Метаболизм гликогена в печени, мышцах и других клетках регулируется несколькими гормонами, одни из которых активируют синтез гликогена, а другие – распад гликогена.

При этом в одной клетке не могут идти одновременно синтез и распад гликогена – это противоположные процессы с совершенно с разными задачами.

Синтез и распад исключают друг друга или, по-другому, они реципрокны.

Активность ключевых ферментов метаболизма гликогена гликогенфосфорилазы и гликогенсинтазы изменяется в зависимости наличия в составе фермента фосфорной кислоты – они активны либо в фосфорилированной, либо в дефосфорилированной форме.

Присоединение фосфатов к ферменту производят протеинкиназы, источником фосфата является АТФ:

  • фосфорилаза гликогена активируется после присоединения фосфатной группы,
  • синтаза гликогена после присоединения фосфата инактивируется.

Скорость фосфорилирования указанных ферментов повышается после воздействия на клетку адреналина, глюкагона и некоторых других гормонов. В результате адреналин и глюкагон вызывают гликогенолиз, активируя фосфорилазу гликогена.

Например,

  • во время мышечной работы адреналин вызывает фосфорилирование внутримышечных ферментов обмена гликогена. В результате фосфорилаза гликогена активируется, синтаза инактивируется. В мышце происходит распад гликогена, образуется глюкоза для обеспечения энергией мышечного сокращения.
  • при голодании в ответ на снижение глюкозы крови из поджелудочной железы секретируется глюкагон. Он воздействует на гепатоциты и вызывает фосфорилирование ферментов обмена гликогена, что приводит к гликогенолизу и повышению глюкозы в крови.

Способы активации синтазы гликогена

Аллостерическая активация гликогенсинтазы осуществляется глюкозо-6-фосфатом.

Еще одним способом изменения ее активности является химическая (ковалентная) модификация. При присоединении фосфата гликогенсинтаза прекращает работу, т.е.

она активна в дефосфорилированном виде.

Удаление фосфата от ферментов осуществляют протеинфосфатазы, которые активируются при действии на клетку инсулина – в результате он повышает синтез гликогена.

Вместе с этим, инсулин и глюкокортикоиды ускоряют синтез гликогена, увеличивая количество молекул гликогенсинтазы.

Способы активации фосфорилазы гликогена

Скорость гликогенолиза лимитируется только скоростью работы фосфорилазы гликогена. Ее активность может изменяться тремя способами:

  • ковалентная модификация,
  • кальций-зависимая активация,
  • аллостерическая активация с помощью АМФ.

Ковалентная модификация фосфорилазы

При действии некоторых гормонов на клетку происходит активация фермента через аденилатциклазный механизм, который является так называемым каскадным регулированием. Последовательность событий в данном механизме включает:

  1. Молекула гормона (адреналин, глюкагон) взаимодействует со своим рецептором;
  2. Активный гормон-рецепторный комплекс воздействует на мембранный G-белок;
  3. G-белок активирует фермент аденилатциклазу;
  4. Аденилатциклаза превращает АТФ в циклический АМФ (цАМФ) – вторичный посредник (мессенджер);
  5. цАМФ аллостерически активирует фермент протеинкиназу А;
  6. Протеинкиназа А фосфорилирует различные внутриклеточные белки:
  • одним из этих белков является синтаза гликогена, ее активность угнетается,
  • другим белком – киназа фосфорилазы, которая при фосфорилировании активируется;
  1. Киназа фосфорилазы фосфорилирует фосфорилазу “b” гликогена, последняя в результате превращается в активную фосфорилазу “а”;
  2. Активная фосфорилаза “а” гликогена расщепляет α-1,4-гликозидные связи в гликогене с образованием глюкозо-1-фосфата.

Аденилатциклазный способ активации фосфорилазы гликогена

Кроме гормонов, влияющих на активность аденилатциклазы через G-белки, существуют иные способы регуляции этого механизма. Например, после воздействия инсулина активируется фермент фосфодиэстераза, которая гидролизует цАМФ и, следовательно, снижает активность гликоген-фосфорилазы.

Кальций-зависимая активация

Некоторые гормоны влияют на углеводный обмен посредством кальций-фосфолипидного механизма. Активация ионами кальция заключается в активации киназы фосфорилазы не протеинкиназой, а ионами Ca2+ и кальмодулином.

Этот путь работает при инициации кальций-фосфолипидного механизма.

Такой способ оправдывает себя, например, при мышечной нагрузке, если гормональные влияния через аденилатциклазу недостаточны, но в цитоплазму под влиянием нервных импульсов поступают ионы Ca2+.

Аллостерическая (метаболическая) активация

Также существует активация гликогенолиза с помощью АМФ – такая аллостерическая активация происходит благодаря присоединению АМФ к молекуле фосфорилазы “b”

Молекулы АМФ, стимулирующие гликогенолиз, образуются в реакции фермента аденилаткиназы, активируемой при снижении количества АТФ и накоплении АДФ. Особенно ярко значение такой регуляции проявляется при интенсивной мышечной работе:

АДФ + АДФ ↔ АТФ + АМФ

Источник: https://biokhimija.ru/uglevody/reguljacija-obmena-glikogena.html

Глюкагон: что это за гормон и какие функции выполняет?

Глюкагон инициирует распад гликогена в печени

Один из важнейших гормонов поджелудочной железы – глюкагон. Именно он отвечает за снижение показателей сахара в крови, помогает организму бороться с инфекциями и справляться с большой физической нагрузкой.

Кроме того, именно инсулин и глюкагон тормозят выработку кортизола и ускоряют выброс гликогена в кровь.

Если же наблюдается превышение концентрации вещества или его недостаток, может развиться целый ряд неприятных осложнений, болезней.

Глюкагон – что это, какие функции выполняет?

Гормон глюкагон – второй по значимости гормон поджелудочной железы, который вырабатывается отдельными островками. По своей природе он – полипептид, а по воздействию – антагонист инсулина.

Глюкагон поджелудочной железы отвечает за быстрый распад гликогена, его попадание в кровь и повышение уровня сахара. Также это вещество учувствует в других обменных процессах организма, например:

  • стимулирует гликогенолиз;
  • активизирует катаболизм;
  • увеличивает объем кетоновых тел.

Стоит отметить, что синтез гормона усиливается при гипогликемии, снижении концентрации аминокислот или гормона роста (соматотропного гормона). Такое часто случается при длительном голодании или повышенной физической активности. По сути, вещество выступает в противодействие инсулину, который призван понизить показатели сахара.

Не стоит недооценивать функции глюкагона, так как при его нехватке или переизбытке развиваются редкие заболевания, которые не всегда поддаются лечению. Например, могут быть диагностированы опухоли альфа-клеток поджелудочной.

Механизм действия гормона глюкагона связан с рецепторами клеток печени, где он способствует распаду гликогена и постоянно поддерживает уровень глюкозы в организме в пределах нормы.

Нехватка и избыток активного вещества

Выработка глюкагона обычно усиливается при снижении уровня сахара в крови, введении аминокислот и под воздействием работы пищеварительного тракта.

Но иногда этот процесс выходит из-под контроля по разным причинам и тогда могут развиваться глюкагономы, а именно опухоли, отходящие от островков поджелудочной железы.

Также избыток глюкагона ведет к развитию неконтролируемого сахарного диабета.

Недостаток активного вещества наблюдается гораздо реже, и зачастую у новорожденных. При этом они страдают от слабовыраженной гипофункции глюкагона и гиперинсулинемии. Подобные случаи регистрируются редко, но легко решаются при помощи медикаментозного лечения.

Анализ на глюкагон

Уровень глюкагона помогает определить специальный анализ крови, который рекомендуется проводить при таких показаниях:

  • низкая чувствительность тканей к инсулину при диабете второго типа;
  • опухоли поджелудочной железы;
  • для подтверждения диагноза хронического панкреатита.

Для исследования берут венозную кровь, причем утром натощак. Также рекомендуется придерживаться следующих правил подготовки:

  • последний прием пищи должен быть за 8-10 часов до исследования;
  • утром можно пить только воду;
  • не стоит курить за пару часов до анализа;
  • за сутки до теста стоит отказаться от жирной и сладкой пищи, употребления алкоголя;
  • за сутки нужно избегать повышенной физической нагрузки и стрессов;
  • если человек принимает гормоны и прочие медикаменты, об этом следует заранее сообщить врачу.

Если говорить о нормах глюкагона, то для взрослых – это не больше 60 пг/мл, а для детей – от 148 до 400 пг/мл.

Расшифровкой результатов должен заниматься только эндокринолог, который учитывает общее состояние здоровья, возраст и пол пациента. Для постановки диагноза обычно назначается повторный тест и дополнительные анализы.

Использование глюкагона для лечения

Очень часто глюкагон применяется для терапии тяжелых гипогликемических реакций, которые вызывает инсулин. Обычно используются внутривенные инъекции, которые позволяют вернуть больного в сознание для приема сахарозы или глюкозы. Но при этом стоит учитывать общие ресурсы гормона в печени.

Если наблюдается длительное голодание или продолжительная гипогликемия, глюкагон почти не окажет эффекта. Возможна и побочная реакция при приеме гормона внутрь, например, тошнота и рвота.

Многие не обращают внимание на состояние поджелудочной, а именно этот орган вырабатывает важные для жизни гормоны. Например, глюкагон и инсулин, которые отвечают за метаболические процессы и регулируют показатели глюкозы в крови.

Если наблюдаются нарушения, например, гиперфункция или гипофункция глюкагона, велика вероятность появления гипогликемии или опухолей в железе.

Поэтому следует посещать профилактические осмотры и контролировать общее состояние здоровья регулярно (желательно раз в год).

ссылкой:

Реклама партнеров и статьи по теме

Источник: https://infamedik.ru/glyukagon-chto-eto-za-gormon-i-kakie-funktsii-vypolnyaet/

Глюкагон инициирует распад гликогена в печени

Глюкагон инициирует распад гликогена в печени

Глюконеогенез — это синтез глюкозы из неуглеводных предшественников (лактата, пирувата, оксалоацетата, глицерина, аминокислот). По направлению реакций глюконеогенез (ГНГ) напоминает гликолиз наоборот.

Однако ГНГ не является простым обращением гликолиза, так как в нем три фермента (гексокиназа, фосфофруктокиназа, пируваткиназа) катализируют необрати­мые реакции и поэтому в глюконеогенезе работать не могут. Они заменяются на другие ферменты.

Так, пируватки­наза заменяется двумя ферментами пируваткарбоксилазой и фос­фоенолпируваткарбоксикиназой (ФЕПКК); фосфофруктокиназа — фрук­тозо-1,6-дифосфатазой; гексокиназа — глюкозо-6-фосфатазой.

На образование 1 молекулы глюкозы расходуется 6 макроэргов (4 АТФ и 2 ГТФ). ГНГ локализован в цитоплазме гепатоцитов печени, в клетках коры почек и тонкого кишечника. Около 90% лактата, используемого в глюконеогенезе, поступает в печень, 10% — в почки и тонкий кишечник.

Значение глюконеогенеза

1. Является важным источником глюкозы в организме;

2. Удаляет большую часть лактата из клеток и тканей, работаю­щих в анаэробных условиях, что предохраняет их от метаболического аци­доза. ГНГ особенно важен после интенсивной мышечной работы, когда накапливается лактат.

20-30% лактата может окисляться до СО2 и Н2О в самой мышце, 70-80% используется в ГНГ на образование глюкозы. Так как в мышце нет ГНГ, лактат из нее поступает в кровь, затем в печень, где превра­щается в глюкозу, которая кровью разносится всем органам и тканям, в том числе и мышцам.

Таким образом, между печенью и мыщцей существует взаимосвязь, так называемый цикл Кори (глюкозо-лактатный цикл).

Регуляция глюконеогенеза

Ключевыми ферментами ГНГ являются: пируваткарбоксилаза, ФЕПКК, фрук­тозо-1,6-дифосфатаза, глюкозо-6-фосфатаза.

ГНГ усиливают: глюкагон, катехоламины, глюкокортикостероиды, ацетил-КоА, АТФ, цАМФ, Са2+. Тормозят глюконеогенез: инсулин, АДФ, этанол.

Источники глюкозо-6-фосфата: 1) во всех клетках образуется из глюкозы в ходе гексокиназной реакции; 2) в печени и мышцах образуется в ходе фос­форолиза из гликогена; 3) в печени, мышцах, тонком кишечнике — в резуль­тате ГНГ; 4) в печени — в результате унификации моносахаридов.

Пути использования глюкозо-6-фосфата: 1) синтез гликогена; 2) окис-ление до лактата в анаэробных условиях и до СО2 и Н2О в аэробных; 3) окисление в пентозофосфатном пути; 4) превращение в глюкозу (в печени, тонком ки­шечнике и коре почек).

1.8. Пентозофосфатный путь (пфп)

Это прямое окисление глюкозо-6-фосфата. Состоит из двух частей: окисли­тельной (необратимой) и неокислительной (обратимой).

В ходе окислитель­ной части ПФП при участии глюкозо-6-фосфатдегидрогеназы и 6-фосфоглю­конатдегидрогеназы глюкозо-6-фосфат окисляется с образованием рибозо-5-фосфата, СО2, 2 молекул НАДФН.

В неокислительной части ПФП из каждых трех молекул рибозо-5-фосфата образуются 1 молекула фосфоглицерино­вого альдегида и 2 молекулы фруктозо-6-фосфата.

Дальнейшая судьба этих метаболитов известна: они могут либо окисляться в гликолизе и, в зависимо­сти от условий, превращаться в лактат или пируват, либо использоваться в ГНГ на образование глюкозы.

Если метаболиты окислительной части ПФП будут использоваться в ГНГ, тогда будет иметь место замыкание процесса, то есть ПФП примет вид цикла. Для протекания неокислительной части ПФП необходим витамин В1.

Значение ПФП: 1) энергетическое — образующиеся метаболиты окислитель­ной части могут использоваться в гликолизе; 2) синтетическое — связано с использованием рибозо-5-фосфата и НАДФН.

[attention type=red]

Рибозо-5-фосфат использу­ется на синтез нуклеотидов, которые необходимы для образования кофер­ментов, макроэргов, нуклеиновых кислот.

[/attention]

НАДФН необходим для восстано­вительныхбиосинтезов (для работы редуктаз в синтезе холестерина и жирных кислот; в образовании дезоксирибозы из рибозы; для восстановления глутатиона, в образовании глутамата из 2-оксоглутарата); для работы гидроксилаз, участ­вующих в синтезе катехоламинов, серотонина, стероидных гормонов, желч­ных кислот, активной формы витамина D, синтезе коллагена, обезвреживании ксенобиотиков; используется в трансгидрогеназной реакции.

ПФП локализованв цитозоле клеток.

Он особенно активен в тканях эмбриона и плода, лимфоидной и миелоидной тканях, слизистой тонкого кишечника, жировой ткани, эндокринных железах (надпочечники, половые), молочных железах (в период лактации), печени, эритроцитах, пульпе зуба, зачатках эмали зуба, при гипертрофии органов. ПФП мало акти­вен в нервной, мышечной и соединительной тканях. ПФП способствует про­зрачности хрусталика глаза; предупреждает гемолиз эритроцитов; входит в систему защиты от свободных радикалов и активных форм кислорода.

Регуляция ПФП:ключевыми ферментами являются — глюкозо-6-фосфатде­гидрогеназа, 6-фосфоглюконатдегидрогеназа, транскетолаза. Активность ПФП увеличивается при повышении отношения НАДФ+/ НАДФН, а также под влиянием инсулина и йодтиронинов. ПФП ингибируют глюко­кортикостероиды.

Источник: studfile.net

Источник: https://naturalpeople.ru/gljukagon-iniciiruet-raspad-glikogena-v-pecheni/

Глюкагон и инсулин: функции и взаимосвязь гормонов

Глюкагон инициирует распад гликогена в печени

Глюкагон и инсулин – гормоны поджелудочной железы. Функция всех гормонов – регуляция обмена веществ в организме.

Основная функция инсулина и глюкагона – обеспечение организма энергетическими субстратами после еды и в период голодания. После еды необходимо обеспечить поступление глюкозы в клетки и запасание ее излишков.

В период голодания – извлечь глюкозу из резервов (гликогена) или синтезировать ее или другие энергетические субстраты.

Распространено мнение, что инсулин и глюкагон расщепляют углеводы. Это неверно. Обеспечивают расщепление веществ ферменты. Гормоны же регулируют эти процессы.

Синтез глюкагона и инсулина

Гормоны производятся в железах внутренней секреции. Инсулин и глюкагон – в поджелудочной железе: инсулин в β-клетках, глюкагон – в α-клетках островков Лангерганса. Оба гормона имеют белковую природу и синтезируются из предшественников.

Инсулин и глюкагон выделяются в противоположных состояниях: инсулин при гипергликемии, глюкагон – при гипогликемии.

Полупериод жизни инсулина – 3-4 минуты, его постоянная варьирующая секреция обеспечивает поддержание уровня глюкозы в крови в узких пределах.

Эффекты инсулина

Инсулин регулирует обмен веществ, прежде всего – концентрацию глюкозы. Он влияет на мембранные и внутриклеточные процессы.

Мембранные эффекты инсулина:

  • стимулирует транспорт глюкозы и ряда других моносахаридов,
  • стимулирует транспорт аминокислот (главным образом аргинина),
  • стимулирует транспорт жирных кислот,
  • стимулирует поглощение клеткой ионов калия и магния.

Инсулин оказывает внутриклеточные эффекты:

  • стимулирует синтез ДНК и РНК,
  • стимулирует синтез белков,
  • усиливает стимуляцию фермента гликогенсинтазы (обеспечивает синтез гликогена из глюкозы – гликогенез),
  • стимулирует глюкокиназу (фермент способствующий превращению глюкозы в гликоген в условиях ее избытка),
  • ингибирует глюкозо-6-фосфатазу (фермент, катализирующий превращение глюкозо-6-фосфата в свободную глюкозу и, соответственно, повышающий уровень сахара в крови),
  • стимулирует липогенез,
  • ингибирует липолиз (за счет торможения синтеза цАМФ),
  • стимулирует синтез жирных кислот,
  • активирует Na+/K+-АТФ-азу.

Роль инсулина в транспорте глюкозы в клетки

Глюкоза попадает в клетки с помощью специальных белков-транспортеров (GLUT). В разных клетках локализуются многочисленные GLUT. В мембранах клеток скелетных и сердечных мышц, жировой ткани, лейкоцитов, коркового слоя почек работают инсулинзависимые транспортеры – GLUT4.

Транспортеры инсулина в мембранах клеток ЦНС, печени нсулиннезависимы, поэтому обеспечение клеток этих тканей глюкозой зависит только от ее концентрации в крови. В клетки почек, кишечника, эритроцитов глюкоза попадает вообще без переносчиков, путем пассивной диффузии.

Таким образом, инсулин необходим для попадания глюкозы в клетки жировой ткани, скелетных мышц и сердечных мышц.

При недостатке инсулина в клетки этих тканей попадет лишь небольшое количество глюкозы, недостаточное для обеспечения их метаболических потребностей, даже в условиях высокой концентрации глюкозы в крови (гипергликемии).

Инсулин стимулирует утилизацию глюкозы, включая несколько механизмов.

  1. Повышает активность гликогенсинтазы в клетках печени, стимулируя синтез гликогена из остатков глюкозы.
  2. Повышает активность глюкокиназы в печени, стимулируя фосфорилирование глюкозы с образованием глюкозо-6-фосфата, который «запирает» глюкозу в клетке, т. к. не способен проходить через мембрану из клетки в межклеточное пространство.
  3. Ингибирует фосфатазу печени, катализирующую обратное превращение глюкозо-6-фосфата в свободную глюкозу.

Все перечисленные процессы обеспечивают поглощение глюкозы клетками периферических тканей и снижение ее синтеза, что приводит к снижению концентрации глюкозы в крови. Кроме того, усиление утилизации глюкозы клетками сохраняет запасы других внутриклеточных энергетических субстратов – жиров и белков.

Роль инсулина в обмене белков

Инсулин стимулирует как транспорт свободных аминокислот в клетки, так и синтез белка в них. Синтез белка стимулируется двумя путями:

  • за счет активации мРНК,
  • за счет увеличения поступления аминокислот в клетку.

Кроме того, как было сказано выше, усиление использования клеткой глюкозы в качестве энергетического субстрата, замедляет распад в ней белка, что приводит к увеличению белковых запасов. За счет такого эффекта инсулин участвует в регуляции процессов развития и роста организма.

Роль инсулина в жировом обмене

Мембранные и внутриклеточные эффекты инсулина приводят к увеличению запасов жира в жировой ткани и печени.

  1. Инсулин обеспечивает проникновение глюкозы в клетки жировой ткани и стимулирует ее окисление в них.
  2. Стимулирует образование липопротеиновой липазы в эндотелиальных клетках. Этот вид липазы ферментирует гидролиз триацилглицеролов, связанных с липопротеинами крови, и обеспечивает поступление полученных жирных кислот в клетки жировой ткани.
  3. Ингибирует внутриклеточную липопротеиновую липазу, таким образом, тормозя липолиз в клетках.

Функции глюкагона

Глюкагон оказывает влияние на углеводный, белковый и жировой обмен. Можно сказать, что глюкагон – антагонист инсулина по оказываемым эффектам. Главным результатом работы глюкагона является повышение концентрации глюкозы в крови. Именно глюкагон обеспечивает поддержание необходимого уровня энергетических субстратов – глюкозы, белков и жиров в крови в период голодания.

1. Роль глюкагона в обмене углеводов.

Обеспечивает синтез глюкозы путем:

  • усиления гликогенолиза (расщепления гликогена до глюкозы) в печени,
  • усиления глюконеогенеза (синтеза глюкозы из неуглеводистых предшественников) в печени.

2. Роль глюкагона в обмене белков.

Гормон стимулирует транспорт глюкагонных аминокислот в печень, что способствует в клетках печени:

  • синтезу белков,
  • синтезу глюкозы из аминокислот – глюконеогенезу.

3. Роль глюкагона в жировом обмене.

Гормон активирует в жировой ткани липазу, в результате в крови повышается уровень жирных кислот и глицерина. Это в конечном итоге опять же приводит к повышению концентрации глюкозы в крови:

  • глицерин как неуглеводистый предшественник включается в процесс глюконеогенеза – синтез глюкозы;
  • жирные кислоты превращаются в кетоновые тела, которые используются в качестве энергетических субстратов, что сохраняет запасы глюкозы.

Взаимосвязь гормонов

Инсулин и глюкагон неразрывно связаны между собой. Их задача – регулировать концентрацию глюкозы в крови. Глюкагон обеспечивает ее повышение, инсулин – понижение. Они выполняют противоположную работу. Стимулом выработки инсулина является повышение концентрации глюкозы в крови, глюкагона – понижение. Кроме того, выработка инсулина тормозит секрецию глюкагона.

Если нарушается синтез одного из этих гормонов, другой начинает работать некорректно. Например, при сахарном диабете уровень инсулина в крови низкий, ингибиторное действие инсулина на глюкагон ослаблено, в результате уровень глюкагона в крове слишком высокий, что приводит к постоянному повышению уровня глюкозы в крови, чем и характеризуется данная патология.

К неправильной выработке гормонов, некорректному их соотношению приводят погрешности в питании. Злоупотребление белковой пищей стимулирует избыточное выделение глюкагона, простыми углеводами – инсулина. Появление дисбаланса в уровне инсулина и глюкагона приводят к развитию патологий.

Источник: https://FB.ru/article/426409/glyukagon-i-insulin-funktsii-i-vzaimosvyaz-gormonov

Синтез гликогена в печени: что такое распад и жировые включения гликогена?

Глюкагон инициирует распад гликогена в печени

Печень является жизненно необходимым внутренним органом, так как она вырабатывает желчь, очищает кровь от ядов и токсинов, отвечает за выработку витаминов, поддерживает работу кроветворной системы, снабжает организм глицерином и питательными элементами, нейтрализует токсичные желчные пигменты и многое другое.

Очень важной функцией печени является еще и гликогеногенез. Гликоген – это сложный углевод. Он является своеобразным резервом организма. Хранится гликоген в печени. Кстати, не стоит путать данный элемент с целлюлозой, инсулином, фруктозой, сахарозой и глюкозой – все это совершенно разные понятия и элементы.

Гликоген состоит из соединенных в цепочку молекул глюкозы. Откладывается вещество не только в печени, но и в мышечной ткани, правда, в незначительном количестве. Рассмотрим подробнее, как происходит выработка и обмен гликогена, зачем он нужен, и в каких случаях нарушается конвертация глюкозы в гликоген.

Синтез и превращение гликогена в печени

Рассмотрим подробнее, как происходят синтез и распады гликогена в печени. Отметим, что синтез и превращение гликогена в человеческом организме несколько отличается от синтеза и превращения у животных, в том числе амфибий.

Зачем вообще нужен гликоген в организме, и почему человек не может обойтись только сахаром, то есть глюкозой? Данный вопрос в свое время заинтересовал многих именитых ученых.

[attention type=green]

Еще в 20 веке доктора выяснили, что гликоген является сложным углеводом, который состоит из огромного количества молекул глюкозы.

[/attention]

По сути, гликоген можно назвать концентрированным сахаром, который нейтрализован и не попадает в кровяное русло, пока вещество не понадобится организму.

Синтез гликогена в печени происходит, ровно, как и его дальнейшая метаболизация. Печень перерабатывает глюкозу и жирные кислоты по своему усмотрению. Кстати, жирные кислоты – это очень сложные структуры, в которых есть и углеводы, и транспортирующие белки.

Организм при помощи сахаров и жирных кислот создает гликогеновое депо, которое накапливается в клетках печени и мышечной ткани. При стрессах и интенсивных физических нагрузках гликоген выбрасывается в кровоток, чтобы насытить организм энергией.

Гликогеновое депо, а точнее его объем, значительно повышается у спортсменов, так как они затрачивают во время тренировок много энергии. Множественные включения гликогена в клетках печени человека позволяют:

  1. Повысить выносливость.
  2. Поддерживать уровень сахара в норме.
  3. Увеличить объем мышечной ткани (косвенным образом).

Если человек потребляет много простых углеводов (сладостей), то печень будет испытывать переизбыток сахара. В результате развивается жировая дегенерация печени и даже аутоиммунный гепатит.

Что влияет на уровень гликогена?

От чего зависит концентрация гликогена в печени, и по каким причинам генерализация элемента может снижаться, либо напротив – возрастать? Рассмотрим все по порядку. Изучая гистологию печени и реакции органа на физические нагрузки, длительное голодание и избыток углеводов врачи пришли к выводу, что уровень гликогена напрямую зависит от физической активности человека.

Попробуем спроектировать следующую ситуацию. У нас есть два человека – Вася и Коля. Вася – спортсмен, который занимается 3-5 раз в неделю, в его жизни регулярно присутствует анаэробный тренинг. Коля — обыкновенный человек, который работает в офисе и не занимается спортом. Безусловно, Васе нужно гораздо больше энергии, поэтому размер гликогенового депо у него будет выше.

Также метаболические процессы в печени и биосинтез гликогена будет зависеть от пищи, которую потребляет человек. Причем корреляция идентична и для взрослого, и для ребенка. Уровень гликогена зависит от:

  • Гликемического индекса потребляемой пищи. Чем он выше, тем больше организм запасает жиров.
  • Гликемической нагрузки. Об этом мы говорили выше.
  • Типа углевода. Простые углеводы быстро повышают уровень сахара в крови и способствуют отложению жира, а сложные (каши) напротив – помогают поддерживать нормальный уровень сахара на протяжении дня и не синтезировать большое количество жирных кислот.
  • Количества съеденных углеводов.

По словам диетологов, чистый сахар и сладости уходят в жировую прослойку практически сразу и целиком, а сложные углеводы могут вообще не превратиться в жирные кислоты и гликоген.

Нарушение синтеза и расщепления гликогена в печени

Синтез гликогена может как увеличиваться, так и снижаться. При этом запасы элемента в мышечной ткани и печени могут восполняться, так и истощаться соответственно. Почему так происходит, и при каких заболеваниях наблюдается нарушение метаболических процессов?

Основное заболевание-провокатор – это сахарный диабет. Существует два типа СД – инсулинозависимый и инсулиннезависимый. Точные причины возникновения сахарного диабета 1 типа неизвестны, а второй тип, предположительно, развивается вследствие переедания, дефицита физических нагрузок, гормональных сбоев, инфекционных заболеваний, панкреатита.

При сахарном диабете инсулин начинает плохо расщеплять и утилизировать глюкозу, происходит ускорение глюконеогенеза, тормозится переход глюкозы в жир, повышается активность глюкозо-6-фосфатазы.

Таким образом, при СД организм не может в достаточной мере использовать глюкозу и пополнять гликогеновое депо, вследствие чего повышается уровень сахара в крови. Максимально допустимый уровень 5,5 ммоль/л, от 6 до 6,6 ммоль/л – это преддиабет, а все что выше – сахарный диабет. Если не предпринять меры, то человек впадает в гипергликемическую кому.

В таких случаях показана госпитализация, в реанимации внутривенно вводятся медикаменты для нормализации углеводного обмена и кислотно-щелочного баланса. После выхода из комы больной должен пройти комплексную диагностику, сдать анализ крови на гликированный гемоглобин и т.д. Основная рекомендация при диабете – стабилизация рациона, инсулинотерапия и прием гипогликемических таблеток.

https://www.youtube.com/watch?v=JXqaBOC7V9k

Нарушение синтеза и расщепления гликогена в печени также могут спровоцировать:

  1. Отсутствие физических нагрузок в соединении с употреблением большого количества простых углеводов и жиров.
  2. Патологии гепатобилиарной системы. При них гликоген перестает образовываться должным образом, сахар может сразу превращаться в жирные кислоты. Также при болезнях, связанных со здоровьем печени, возрастает активность печеночных трансаминаз. Нарушение синтеза гликогена может осуществляться при билиарном циррозе печени, печеночной недостаточности, фиброзе, вирусном, аутоиммунном, лекарственном или алкогольном гепатите, жировом гепатозе, холангите и даже острой форме холецистита.
  3. Гипоксические состояния.
  4. Гиповитаминоз B1.
  5. Гликогеноз. При этой патологии серьезно страдает печень. Гликогеноз это обобщенное понятие синдромов, при которых нарушается работа ферментов, за счет которых организму удается осуществлять синтез и расщепление гликогена.
  6. Нарушение фосфорилирования глюкозы в кишечной стенке.

Если организм начал хуже секретировать гликоген, нужно пройти дифференциальную диагностику. Чтобы врач мог генерализовать первопричину нарушений надо сначала обследовать печень. Рекомендуется сделать УЗИ печени, сдать биохимический анализ крови, сдать ПЦР и ИФА на маркеры гепатитов, сдать анализ крови на сахар. По необходимости проводится биопсия.

Источник: https://blotos.ru/sintez-glikogena-v-pecheni

Будь здоров
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: