Гомозиготное состояние гена это

Содержание
  1. ГОМОЗИГОТНЫЙ: ОПРЕДЕЛЕНИЕ, ПРИМЕРЫ И ОТЛИЧИЯ ОТ ГЕТЕРОЗИГОТНОГО
  2. Гомозиготное определение
  3. Разница между гомозиготными и гетерозиготными
  4. Гомозиготные примеры
  5. Цвет глаз
  6. Веснушки
  7. Цвет волос
  8. Гомозиготные гены и болезнь
  9. Муковисцидоз
  10. Серповидноклеточная анемия
  11. фенилкетонурия
  12. Мутация гена метилентетрагидрофолатредуктазы (MTHFR)
  13. навынос
  14. Гены: что это такое и как они работают. Что такое хромосомы?
  15. Всё началось с гороха
  16. Днк как носитель генов
  17. Что такое хромосомы
  18. Как работают гены
  19. Что такое мутация
  20. Аллельные гены, их свойства. Гомозиготы и гетерозиготы
  21. Свойства генов
  22. Аллельные гены
  23. Гомозиготы и гетерозиготы
  24. Отличие гомозиготы и гетерозиготы (таблица)
  25. Гетерозиготное носительство что это
  26. Что такое доминантные и рецессивные гены?
  27. Как узнать гетерозиготный или гомозиготный организм?
  28. Формула гомозигот — гетерозиготный и гомозиготный генотип: примеры
  29. К чему приводит преобладание гомозиготных особей?
  30. В чем отличие гетерозиготных организмов от гомозиготных организмов?
  31. Взаимодействие генов
  32. Кодоминирование
  33. Пример решения задачи №1
  34. Пример решения задачи №2
  35. Комплементарность
  36. Пример решения задачи №3
  37. Эпистаз
  38. Пример решения задачи №4
  39. Полимерия
  40. Пример решения задачи №5
  41. Мутации генов гемостаза MTHFR – что это значит и что с этим делать
  42. Что такое мутация генов MTHFR
  43. 1. Потребляйте больше натурального фолата, витамина В6 и витамина В12

ГОМОЗИГОТНЫЙ: ОПРЕДЕЛЕНИЕ, ПРИМЕРЫ И ОТЛИЧИЯ ОТ ГЕТЕРОЗИГОТНОГО

Гомозиготное состояние гена это

В общем, у людей одни и те же гены. Разнообразны разные гены. Они контролируют наши физические характеристики и здоровье.Каждая вариация называется аллелем. Вы наследуете по два аллеля для каждого ген

Гомозиготное определение

В общем, у людей одни и те же гены. Разнообразны разные гены. Они контролируют наши физические характеристики и здоровье.

Каждая вариация называется аллелем. Вы наследуете по два аллеля для каждого гена. Один происходит от вашей биологической матери, а другой – от вашего биологического отца.

Если аллели идентичны, вы гомозиготны по этому конкретному гену. Например, это может означать, что у вас есть два аллеля гена, вызывающего карие глаза.

[attention type=yellow]

Некоторые аллели являются доминантными, а другие – рецессивными. Доминантный аллель выражен сильнее, поэтому он маскирует рецессивный аллель. Однако в гомозиготном генотипе этого взаимодействия не происходит. У вас либо два доминантных аллеля (гомозиготный доминантный), либо два рецессивных аллеля (гомозиготный рецессивный).

[/attention]

Читайте дальше, чтобы узнать о гомозиготном генотипе, а также о примерах и рисках заболевания.

Разница между гомозиготными и гетерозиготными

Термин «гетерозиготный» также относится к паре аллелей. В отличие от гомозигот, гетерозиготность означает, что у вас два разные аллели. Вы унаследовали разные версии от каждого родителя.

В гетерозиготном генотипе доминантный аллель преобладает над рецессивным. Таким образом, будет выражена доминирующая черта. Рецессивная черта не проявляется, но вы все еще носитель. Это означает, что вы можете передать его своим детям.

Это противоположность гомозиготности, когда выражается признак совпадающих аллелей – доминантный или рецессивный.

Гомозиготные примеры

Гомозиготный генотип может проявляться по-разному, например:

Цвет глаз

Аллель коричневого цвета глаз доминирует над аллелем голубых глаз. У вас могут быть карие глаза, будь вы гомозиготным (два аллеля для карих глаз) или гетерозиготным (один для карих глаз и один для голубых).

Это не похоже на аллель голубых глаз, который является рецессивным. Чтобы иметь голубые глаза, вам нужны два одинаковых аллеля голубых глаз.

Веснушки

Веснушки – это крошечные коричневые пятна на коже. Они сделаны из меланина – пигмента, придающего цвет вашей коже и волосам.

MC1R ген контролирует веснушки. Черта также является доминирующей. Если у вас нет веснушек, это означает, что вы гомозиготны по рецессивной версии, которая их не вызывает.

Цвет волос

Рыжие волосы – рецессивный признак. Человек, гетерозиготный по рыжим волосам, имеет один аллель для доминантного признака, такого как каштановые волосы, и один аллель для рыжих волос.

Они могут передать аллель рыжих волос своим будущим детям. Если ребенок наследует тот же аллель от другого родителя, он будет гомозиготным и будет иметь рыжие волосы.

Гомозиготные гены и болезнь

Некоторые заболевания вызваны мутировавшими аллелями. Если аллель рецессивный, он с большей вероятностью вызовет заболевание у людей, гомозиготных по этому мутировавшему гену.

Этот риск связан со способом взаимодействия доминантных и рецессивных аллелей. Если бы вы были гетерозиготными по мутировавшему рецессивному аллелю, преобладал бы нормальный доминантный аллель. Заболевание может выражаться слабо или совсем не выражаться.

Если вы гомозиготны по рецессивному мутировавшему гену, у вас более высокий риск заболевания. У вас нет доминантного аллеля, который бы маскировал его действие.

Следующие генетические состояния чаще влияют на гомозиготных по ним людей:

Муковисцидоз

Регулятор трансмембранной проводимости при муковисцидозе (CFTR) ген вырабатывает белок, который контролирует движение жидкости в клетки и из них.

Если вы унаследуете две мутировавшие копии этого гена, у вас муковисцидоз (МВ). Каждый человек с МВ гомозиготен по этой мутации.

Мутация вызывает накопление густой слизи, что приводит к:

  • частые легочные инфекции
  • повреждение поджелудочной железы
  • рубцы и кисты в легких
  • проблемы с пищеварением

Серповидноклеточная анемия

Субъединица гемоглобина бета (ГБД) ген помогает производить бета-глобин, который является частью гемоглобина в красных кровяных тельцах. Гемоглобин позволяет эритроцитам доставлять кислород по всему телу.

При серповидно-клеточной анемии существует две копии ГБД генная мутация. Мутировавшие аллели образуют аномальный бета-глобин, что приводит к низкому уровню эритроцитов и ухудшению кровоснабжения.

фенилкетонурия

Фенилкетонурия (ФКУ) возникает, когда человек гомозиготен по фенилаланингидроксилазе (PAH) генная мутация.

Обычно ген PAH инструктирует клетки производить фермент, который расщепляет аминокислоту, называемую фенилаланином. При ФКУ клетки не могут вырабатывать фермент. Это заставляет фенилаланин накапливаться в тканях и крови.

Больному фенилкетонурией необходимо ограничить количество фенилаланина в своем рационе. В противном случае у них могут развиться:

  • кожная сыпь
  • неврологические проблемы
  • затхлый запах изо рта, кожи или мочи
  • гиперактивность
  • психические расстройства

Мутация гена метилентетрагидрофолатредуктазы (MTHFR)

MTHFR Ген инструктирует наш организм вырабатывать метилентетрагидрофолатредуктазу, фермент, расщепляющий гомоцистеин.

В MTHFR мутация гена, ген не производит фермент. Две заметные мутации включают:

  • C677T, Если у вас есть две копии этого варианта, у вас, скорее всего, разовьется высокий уровень гомоцистеина в крови и низкий уровень фолиевой кислоты. Примерно От 10 до 15 процентов кавказцев из Северной Америки и 25 процентов латиноамериканцев гомозиготны по этой мутации.
  • A1298C, Гомозиготность по этому варианту не связана с высоким уровнем гомоцистеина. Однако имея по одной копии каждого из C677T и A1298C имеет тот же эффект, что и два C677T.

Пока ученые все еще изучают MTHFR мутации, это было связано с:

  • сердечно-сосудистые заболевания
  • сгустки крови
  • осложнения беременности, такие как преэклампсия
  • беременность с дефектами нервной трубки, такими как расщелина позвоночника
  • депрессия
  • слабоумие
  • остеопороз
  • мигрень
  • синдром поликистоза яичников
  • рассеянный склероз

У всех нас есть две аллели или версии каждого гена. Гомозиготность по определенному гену означает, что вы унаследовали две идентичные версии. Это противоположность гетерозиготного генотипа, где аллели разные.

Люди с рецессивными признаками, такими как голубые глаза или рыжие волосы, всегда гомозиготны по этому гену. Рецессивный аллель выражен потому, что нет доминантного аллеля, который бы его замаскировал.

Источник: https://ru.drderamus.com/homozygous-4148

Гены: что это такое и как они работают. Что такое хромосомы?

Гомозиготное состояние гена это

Ген – это наследственный фактор, в котором зашифрован определенный признак организма. Физически ген представляет собой участок ДНК (реже – РНК), который задает последовательность белков либо функциональной РНК. Совокупность генов в организме называют генотипом, а науку о генах – генетикой.

Всё началось с гороха

Аббат Грегор Мендель, австрийский ботаник и биолог, заметил, что потомство не всегда повторяет признаки, которыми обладали родители. Чтобы понять взаимосвязь, Мендель стал выращивать горох, скрещивать различные растения и отслеживать частоту наследования признаков.

Мендель доказал, что отдельные признаки (цвет, форма цветка и т.д.) могут наследоваться независимо. Он вывел теорию доминантных и рецессивных признаков, описал явление прерывистого наследования, математически интерпретировал результаты своих экспериментов.

Труды Менделя впервые опубликовали в 1866 году. Именно его считают основоположником генетики.

До этого ученые считали, что родительские признаки смешиваются подобно жидкости и потомки наследуют именно такой «коктейль». Теория пангенезиса, которую Чарльз Дарвин сформулировал в 1868 году, также следует этой концепции.

Впрочем, Дарвин считал, что «коктейль» состоит из мельчайших отдельных частиц – геммул. Они смешиваются во время зачатия. В целом ученый был недалек от истины.

Собственно термин «ген» в 1909 году ввел Вильгельм Йоханнсен. До этого признаки называли пангенами.

Днк как носитель генов

В 1940-е годы американский биолог Освальд Эвери из Рокфеллеровского института доказал, что дезоксирибонуклеиновая кислота, которая присутствует в ядре клетки, является физическим носителем генетической информации. В экспериментах с пневмококками он установил, что только ДНК, а не белок или другие компоненты, передает признаки от бактерий к их наследникам.

Первые фото ДНК удалось получить только в 1953 году Розалинд Франклин и Морису Уилкинсу. На их основе Джеймс Д. Уотсон и Фрэнсис Крик разработали модель молекулы двухцепочечной спирали ДНК, а также сформулировали теорию генетической репликации – создания двух дочерних ДНК от материнской клетки.

Всё это привело к появлению главной догмы молекулярной биологии. РНК (рибонуклеиновая кислота, одинарная цепочка) транскрибируется с ДНК: ДНК выступает в качестве базы, с которой на РНК переносится информация. При этом белки транслируются с РНК. Обратный процесс (когда ДНК создается по РНК) происходит только в некоторых вирусах, например, в ВИЧ (вирусе иммунодефицита человека).

ДНК состоит из четырех различных нуклеотидов: аденина (А), цитозина (Ц), гуанина (Г) и тимина (Т). Они образуют спаренные основания: ЦГ, АТ, ГЦ, ТА. Противоположные основания в спирали ДНК связаны водородными связями.

Что такое хромосомы

Хромосома образуется из очень длинной молекулы ДНК, которая содержит повторяющиеся цепочки генов. У каждого вида свой набор хромосом (кариотип). Например, у человека 46 хромосом: 22 пары аутосом разной длины и пара половых хромосом – XX или XY.

В геноме человека насчитывается 20-25 тыс. генов. Если молекулу ДНК из самой длинной хромосомы расположить вдоль линии, она займет около 1,5 м. Длина отдельного участка ДНК, который кодирует ген, составит всего 0,005 мм.

Место хранения определенного гена в хромосоме называют локусом. В каждом локусе – определенный аллель гена, одна из нескольких его форм.

[attention type=red]

Аллели могут быть одинаковыми – тогда говорят, что организм гомозиготный. Если аллели разные, то один из них главенствует, доминирует над другим. Доминантный ген подавляет рецессивный. В результате проявляется только один признак, но наследуются оба.

[/attention]

Набор хромосом и аллелей генов в них определяет наш внешний вид, физические и психические данные. Это база, которую затем изменяют природа, среда, образ жизни и т.д.

Как работают гены

Гены можно разделить на две группы – структурные и регуляторные. В структурных генах хранится информация о полипептидных цепях – это собственно признаки. Регуляторные, или функциональные гены включают и выключают структурные гены.

Назначение структурного гена в любом организме – в нужный момент обеспечить появление в клетке белка, который он кодирует. Чтобы это произошло, задействуются различные части гена.

Так, промотор, который находится перед белок-кодирующей частью, задает основные характеристики активности гена. Промотор определяет, в каких клетках будет работать ген, насколько долго и с какой интенсивностью. В конце гена находится терминатор – это сигнал конца цепочки.

РНК-полимераза проходит путь от промотора до терминатора и выполняет синтез матричной РНК – своеобразной инструкции для синтеза белка, правильного расположения в нем нужных аминокислот. Этот процесс называют транскрипцией.

Регуляторные гены – это гены-регуляторы и гены-операторы. Оператор непосредственно связан с определенной группой структурных генов (и такая конструкция называется «оперон»). Регулятор через белок-репрессор воздействует на структурные гены и обеспечивает синтез белка – трансляцию.

В синтезе белка участвует два десятка аминокислот. Каждые три нуклеотида ДНК кодируют определенную аминокислоту. Трансляция происходит на базе РНК-копии гена из ДНК:

  1. Матричная РНК выходит из ядра клетки в цитоплазму и связывается с рибосомой.

  2. В рибосоме синтезируется РНК-копия гена по инструкции из матричной РНК. Затем у этой РНК-копии будет синтезироваться белок.

  3. Из РНК-копии удаляются нитроны – нуклеотиды, которые не нужны для синтеза белка.

  4. Оперон начинает реакцию по синтезу белка. Пока молекул белка недостаточно, белок-репрессор неактивен.

  5. Как только накопилось достаточно молекул синтезируемого белка, белок-репрессор активируется.

  6. Он связывается с геном-оператором.

  7. После связывания синтез белка прекращается.

Что такое мутация

При репликации (копировании) ДНК очень редко, но всё же могут возникать ошибки. Их называют мутациями. Ученые подсчитали, что представитель каждого нового поколения несет в своем геноме 1-2 новых мутации.

Обычно мутации возникают из-за повреждения ДНК в процессе копирования. Они могут привести к хромосомным аномалиям: когда достаточно большие участки хромосомы дублируются, удаляются или перегруппируются.

В результате мутаций белки начинают синтезироваться неправильно. В целом в организмах есть механизмы «ремонта» ДНК после мутаций или уничтожения клеток-мутантов, но они не всегда срабатывают.

Если мутации происходят в половой клетке, у плода могут неправильно сформироваться целые органы и системы. Если в обычной клетке, то могут появиться доброкачественные или злокачественные образования.

[attention type=green]

С другой стороны, отдельные мутации оказывались удачными. Они сыграли важную роль в процессе естественного отбора и привели к созданию более выносливых и приспособленных организмов.

[/attention]

Источник: https://www.anews.com/p/123881962-geny-chto-ehto-takoe-i-kak-oni-rabotayut-chto-takoe-hromosomy/

Аллельные гены, их свойства. Гомозиготы и гетерозиготы

Гомозиготное состояние гена это

Генетика – наука, которая изучает гены, механизмы наследования признаков и изменчивость организмов. В процессе размножения ряд признаков передается потомству. Было замечено еще в девятнадцатом столетии, что живые организмы наследуют особенности своих родителей. Первым, кто описал эти закономерности, был Г.Мендель.

Наследственность – свойство отдельных особей передавать потомству свои признаки при помощи размножения (через половые и соматические клетки). Так сохраняются особенности организмов в ряде поколений. При передаче наследственной информации не происходит точное ее копирование, а всегда присутствует изменчивость.

Изменчивость – приобретение индивидуумами новых свойств или утрата старых. Это важное звено в процессе эволюции и адаптации живых существ. То, что в мире нет идентичных особей – это заслуга изменчивости.

Наследование признаков осуществляется с помощью элементарных единиц наследования – генов. Совокупность генов определяет генотип организма. Каждый ген несет в себе закодированную информацию и расположен в определенном месте ДНК.

Свойства генов

Гены обладают рядом специфических свойств:

  1. Разные признаки кодируются разными генами;
  2. Постоянство – при отсутствии мутирующего действия, наследственный материал передается в неизменном виде;
  3. Лабильность – способность поддаваться мутациям;
  4. Специфичность – ген несет в себе особую информацию;
  5. Плейотропия – одним геном кодируется несколько признаков;

Под действием условий внешней среды генотип дает разные фенотипы. Фенотип определяет степень влияния на организм окружающих условий.

Аллельные гены

Клетки нашего организма имеют диплоидный набор хромосом, они в свою очередь состоят из пары хроматид, разбитых на участки (гены). Разные формы одинаковых генов (например карие/голубые глаза), расположены в одних и тех же локусах гомологичных хромосом, носят название аллельных генов. В диплоидных клетках гены представлены двумя аллелями, один от отца, другой от матери.

Аллели делятся на доминантные и рецессивные. Доминантная аллель определят, какой признак будет выражен в фенотипе, а рецессивная – передается по наследству, но в гетерозиготном организме не проявляется.

Существуют аллели с частичной доминантностью, такое состояние называется кодоминантностью, в таком случае оба признака будут проявляться в фенотипе.

Например, скрещивали цветы с красными и белыми соцветиями, в результате в следующем поколении получили красные, розовые и белые цветы (розовые соцветия и есть проявлением кодоминантности).

Все аллели обозначают буквами латинского алфавита: большими – доминантные (АА, ВВ), маленькими – рецессивные (аа,bb).

Гомозиготы и гетерозиготы

Гомозигота – это организм, в котором аллели представлены только доминантными или рецессивными генами.

Гомозиготность означает наличие одинаковых аллелей в обеих хромосомах (АА, bb). В гомозиготных организмах они кодируют одни и те же признаки (например, белый цвет лепестков роз), в таком случае все потомство получит такой же генотип и фенотипические проявления.

Гетерозигота – это организм, в котором аллели имеют и доминантный, и рецессивный гены.

Гетерозиготность — наличие разных аллельных генов в гомологичных участках хромосом (Аа, Вb). Фенотип у гетерозиготных организмов всегда будет одинаков и определяется доминантным геном.

Например, А – карие глаза, а – голубые глаза, у особи с генотипом Аа будут карие глаза.

[attention type=yellow]

Для гетерозиготных форм характерно расщепление, когда при скрещивании двух гетерозиготных организмов в первом поколении мы получаем следующий результат: по фенотипу 3:1, по генотипу 1:2:1.

[/attention]

Примером может послужить наследование темных и светлых волос, если у обоих родителей они темные. А – доминантная аллель по признаку темных волос, а – рецессивная (светлые волосы).

Р: Аа х Аа

Г: А, а, А, а

F: АА:2Аа:аа

*Где Р – родители, Г – гаметы, F – потомство.

По данной схеме можно увидеть, что вероятность унаследовать от родителей доминантный признак (темные волосы) в три раза выше, чем рецессивный.

Дигетерозигота – гетерозиготная особь, которая несет две пары альтернативных признаков. Например, исследование наследования признаков Менделем с помощью семян гороха.

Доминантными характеристиками были желтый цвет и гладкая поверхность семян, а рецессивными — зеленый цвет и шероховатая поверхность.

В результате скрещивания получилось девять различных генотипов и четыре фенотипа.

Гемизигота – это организм с одним аллельным геном, даже если он рецессивный, фенотипически всегда будет проявляться. В норме они присутствуют в половых хромосомах.

Отличие гомозиготы и гетерозиготы (таблица)

Отличия гомозиготных организмов от гетерозиготных
ХарактеристикаГомозиготаГетерозигота
Аллели гомологичных хромосомОдинаковыеРазные
ГенотипAA, aaAa
Фенотип определяется по признакуПо рецессивному или доминатномуПо доминатному
Однообразие первого поколения++
РасщеплениеНе происходитСо второго поколения
Проявление рецессивного генаХарактерноПодавляется

Размножение, скрещивание гомозигот и гетерозигот ведет к образованию новых признаков, которые необходимы живым организмам для адаптации к переменчивым условиям внешней среды. Их свойства необходимы при выведении культур, пород с высокими качественными показателями.

Оцените, пожалуйста, статью. Мы старались:) (15 4,60 из 5)
Загрузка…

Источник: https://animals-world.ru/allelnye-geny-gomozigoty-i-geterozigoty/

Гетерозиготное носительство что это

Гомозиготное состояние гена это

  • Гомозиготными — называются такие организмы, в которых содержаться аллели, состоящие исключительно из регрессивных или доминантных генов. Хромосомы в гомозиготных организмах, имеют одинаковые аллели, символически обозначенные: АА, аа.
  • Данный вид генов, кодирует однотипные признаки в гомозиготном организме. К примеру, окрас лепестков от определенного сорта цветка — получит все дальнейшее его потомство, с сохранением фенотипических явлений и генотипа данного растения.

Гомозиготные организмы обладают такими свойствами:

  1. В момент соединения подобных организмов, разделение потомства по определенному признаку не прослеживается.
  2. Формируют по выбранному гену, однотипные гаметы.

Различия

  • Гетерозиготным – считается организм, в котором аллели, кодирующие различные признаки, содержат два типа генов: регрессивный и доминантный ген. Имеет символическое изображение: Аа или Bb.
  • У гетерозиготных форм жизни, фенотип одинаковый, обусловленный доминантным геном. Например: А – темные волосы, а – светлые волосы, потомство с генотипом Аа — будет темноволосым. В этом примере аллель А является — доминантная, а – рецессивная аллель. 

К свойствам гетерозиготных организмов можно отнести:

  1. Разделение и перераспределение признаков аллелей, по установленному числовому соотношению у потомственных гетерозиготных особей, по признаку генотипа — соотношение 1:2:1, а по признакам фенотипа – 3:1.
  2. Развитие двух видов гамет.

Что такое доминантные и рецессивные гены?

  • Аллельные гены – это однотипные гены с разными формами, размещенные в одном и том же хромосоме. Данные гены, сформированы из пары, отцовской и материнской аллели. В свою очередь, аллели подразделяются на рецессивную и доминантную форму. Главный признак, который будет проявляться в фенотипе, определяет доминантная аллель.
  • Рецессивная аллель – выполняет вторичные наследственные признаки и не является основополагающей. Доминантный ген всегда ограничивает проявление рецессивного гена. Однако если имеется пара рецессивных видов в одном локусе гомологичных хромосом – это может оказать влияние и внедрить в организм признак или дефект, принадлежащий данному гену.
  • Схематически аллели изображаются в виде латинских букв. Каждый тип аллелей, имеет свое графическое написание: заглавными буквами обозначены доминантные аллели: АА, ВВ, рецессивные отмечаются маленькими буквами: аа, bb.

У человека

К доминантным признакам человека относятся:

  1. Кудрявые волосы, темный цвет волос, мужское облысение, участки волос с отсутствием пигментации.
  2. Глаза: каре-зеленый, карий или зеленый цвет.
  3. Кожа с нормальной пигментацией.
  4. Дефекты: излишек пальцев на верхних или нижних конечностях, срастание или отсутствие нескольких фаланг пальцев, карликовость с укороченными конечностями.
  5. Отсутствие реакции на яд сумаха.
  6. Хорошая свертываемость крови, положительный резус, 2 и 3 группа крови.

Рецессивными признаками считаются:

  1. Волосы: светлые и рыжие, прямые, женское облысение.
  2. Серые или голубые глаза.
  3. Альбинизм или слабая пигментация кожи.
  4. Хорошее строение пальцев.
  5. Положительная реакция на яд сумаха, немота и отсутствие слуха, куриная слепота, цветовая аномалия, 1 группа крови и гемофилия, отрицательный резус-фактора крови.

Как узнать гетерозиготный или гомозиготный организм?

  • Определить генетический тип организма, можно по совместимости аллелей в паре. Если в паре аллелей, обе имею одинаковый вид АА и ОО, значит данный организм гомозиготного генотипа.
  • При разном подборе аллели АО – организм является гетерозиготным генотипом. Также установлено, что гомозиготные виды АА и ОО предусматривают 2 и 1 группу крови. А для гетерозиготного генотипа АО, характерной будет 2 группа крови по доминантному признаку.
  • Ген О – выполняет свойства рецессивного признака. Из этого следует, что доминантный ген — способен проявить себя в обоих случаях: гетерозиготном и рецессивном состоянии.
  • Рецессивные гены выделяются лишь в гомозиготном виде, при гетерозиготном состоянии отсутствуют. На практике, для определения гетерозиготного и гомозиготного организма, применяется метод анализирующего скрещивания особей. Заключается он в том, чтобы доминантный генотип, скрестить с гомозиготным генотипом по рецессивному признаку.
  • Отсутствие расщепления в потомстве – расскажет о доминантном виде особи. В противном случае расщепление в пропорциях 1:1 говорит о гетерозиготном признаке организма.

Формула гомозигот — гетерозиготный и гомозиготный генотип: примеры

  • Имеются такие аллели, где доминантные признаки проявляются не в полной мере. Такие изменения принято называть кодоминантные признаки. Они сочетают в себе оба родительских признаков. При скрещивании разных по цвету соцветий, можно получить смешанный тип – это и будет проявление эффекта кодоминантности признака.
  • Ученый Мендель в своих опытах обнаружил, что иногда потомство имеет промежуточные характеристики, свойственные гибридам. Такие особи, не имеют ярко выраженных доминантных и рецессивных признаков. Это явление также известно, как неполное доминирование.

Неполное

  • Данный вид наследственности, определяется тем, что в нем доминантный ген имеет не такое агрессивное воздействие на рецессивный ген, его вторичные свойства, не до конца угнетены.
  • Формула диплоидных клеток организма при гомозиготном признаке по аллелям А и а, схематически прописывается так: АА и аа. У триплоидного организма эта формула выглядит таким образом: ААА и ааа.
  • Например, АА, СС, аавв – значения, принадлежащие к гомозиготным особям. Организмы с генетической формулой ААВb и АаВВ – гетерозиготные особи.

К чему приводит преобладание гомозиготных особей?

  • Скрещивание пары гомозиготных организмов, имеющих различие по нескольким альтернативным признакам приводит к наследованию генов и надлежащих им признаков, вне зависимости от сочетания формируются всевозможные варианты – подобно моногибридному скрещиванию.
  • Преобладание по фенотипу и всем признакам, отводится потомству в первом поколении. Следующее поколение, будет иметь расщепление в соотношении 9:3:3:1.

В чем отличие гетерозиготных организмов от гомозиготных организмов?

В предоставленной таблице, показаны сравнительные характеристики двух генотипов организма. Указанная информация, позволяет дать краткий анализ по каждому отдельному генотипу и сопоставить их различия между собой.

Характерные признакиГетерозиготаГомозигота
Аллель гомологичной хромосомыРазличныеОдинаковые
Проявление рецессивного генаУгнетаетсяСвойственно
ГенотипАаАА, аа
РасщеплениеВо втором поколенииНе совершается
Признак для определения фенотипаДоминантныйРецессивный и доминантный
Однотипность первого поколенияПозитивнаяПрисутствует
  • Методика скрещивания гомозиготных и гетерозиготных организмов способствует выведению и развитию новых признаков особей. Селекция и гибридизация помогают приумножить устойчивость организмов к ряду возможных заболеваний.
  • Усиливают сопротивляемость при воздействии негативных факторов окружающей сферы на организм, увеличивают продолжительность жизни и способность к адаптации в новой среде обитания.
  • Организмы с новыми генетическими особенностями дают качественное потомство.
  • Благодаря генетическому скрещиванию, появилось множество разновидностей живых культур в растительной и животноводческой сфере.

Вам также может понравиться

Источник: https://marta2.ru/geterozigotnoe-nositelstvo-chto-eto/

Взаимодействие генов

Гомозиготное состояние гена это

Вы уже знаете о том, что гены могут взаимодействовать друг с другом по типу полного и неполного доминирования. Однако, в генетике встречается масса других примеров взаимодействия генов. В этой статье мы затронем те, которые ранее не обсуждались.

Кодоминирование

Кодоминирование – взаимодействия аллельных генов, при котором в гетерозиготном состоянии могут оказаться два доминантных гена одновременно, при этом каждый ген отвечает за свой признак.

Наиболее распространенным примером кодоминирования является наследование групп крови у человека.

Решим пару задач, которые укрепят понимание темы.

Пример решения задачи №1

“Родители имеют II и III группы крови, гетерозиготны. Какие группы крови можно ожидать у их детей?”

Гетерозиготный генотип матери – IAi0 и генотип отца – IBi0. Составим схему решения для такого случая.

Итак, в результате такого брака может получиться ребенок с любой группой крови, в чем мы убедились.

Пример решения задачи №2

“Дигетерозиготная по B (III) группе и положительному резус-фактору вступила в брак с таким же мужчиной. Какое расщепление по фенотипу можно ожидать у детей?”

Сходу понятно, что гетерозиготы по III (B) группе крови будут записаны IBi0. Резус-фактор для нас новое понятие – это белок, находящийся на поверхности эритроцита (тогда говорят, что резус-фактор положителен), или отсутствующий (тогда у человека резус-фактор считается отрицательным). Генотипы записываются так:

  • Резус-фактор положителен: Rh+Rh+, Rh+rh-
  • Резус-фактор отрицателен: rh-rh-

В данной задаче сказано, что “дигетерозиготна по … и положительному резус-фактору” – значит, резус фактор будет записывать в генотипе – Rh+rh-.

Обратите внимание, что ошибкой является записать рецессивный ген перед доминантным. За такое могут снять балл на экзамене: aA, bB, i0IA, rh-Rh+. Правильный вариант записи: Aa, Bb, IAi0, Rh+rh-.

Каждая особь образует 4 гаметы, поэтому потомков получается 16. Подсчитает расщепление по фенотипу:

  • 9 потомков : положительный резус-фактор, III (B) группа крови
  • 3 потомка : положительный резус-фактор, I (0) группа крови
  • 3 потомка : отрицательный резус-фактор, III (B) группа крови
  • 1 потомок : отрицательный резус-фактор, I (0) группа крови

Расщепление по фенотипу в данном случае получилось: 9:3:3:1. Здесь проявляется III закон Менделя – закон независимого наследования, так как гены, отвечающие за группу крови и резус-фактор, находятся в разных хромосомах.

Комплементарность

Тип взаимодействия неаллельных генов, при котором развитие признака определяется не одной, а двумя или более парами неаллельных генов, располагающихся в разных хромосомах.

Неаллельные гены – это гены, расположенные в разных локусах хромосом, которые отвечают за разные признаки. В генетике случается такое, что один неаллельный ген может влиять на другой (ген a подавляет действие гена B). В этом разделе статьи мы подробно разберемся с подобным взаимодействием и рассмотрим задачи, которые могут встретиться.

Таким образом, развитие признака определяется именно сочетанием генов друг с другом. Здесь логичнее подчеркнуть совместное действие генов, нежели чем сказать, что доминантный ген подавляет рецессивный – при комплементарности это не совсем так.

В каждой задаче свой случай комплементарного взаимодействия генов. Чтобы успешно их решать, надо помнить, что такое явление, как комплементарность, в принципе, возможно, и быть внимательным при написании генотипов особей и их гамет.

Пример решения задачи №3

Наследование слуха у человека определяется двумя доминантными генами из разных аллельных пар, один из которых детерминирует развитие слухового нерва, а другой – улитки. Определить вероятность рождения глухих детей, если оба родителя глухие, но по разным генетическим причинам (у одного отсутствует слуховой нерв, у другого улитка). По генотипу оба родителя являются дигомозиготными.

Здесь проявляется I закон Менделя – закон единообразия гибридов первого поколения. Возможен только один вариант генотипа ребенка от такого брака. У ребенка будет развит и слуховой нерв, и улитка – ребенок не будет глухим, в отличие от родителей.

Эпистаз

Эпистаз (противоположное действие генов) – явление, при котором один ген аллельной пары (супрессор) в доминантном (доминантный эпистаз) или рецессивном (рецессивный эпистаз) состоянии может подавлять развитие признака, за развитие которого отвечает другая пара генов.

Широко известным примером рецессивного эпистаза является Бомбейский феномен, названный так в результате зафиксированного случая в индийском городе Бомбеи. Доктор Бхенде обнаружил, что у людей рецессивных по гену h (hh) на поверхности эритроцитов не синтезируются агглютиногены – в результате этого они могут быть универсальными донорами.

Говоря проще о Бомбейском феномене: у людей с генотипом hh всегда обнаруживается первая группа крови при любом генотипе – IAIA, IBIB, IAIB. Ген h подавляет гены IA и IB – на поверхности эритроцитов не образуются агглютиногены A и B.

Пример решения задачи №4

“Редкий рецессивный ген (h) в гомозиготном состоянии обладает эпистатическим действием по отношению к генам IA, IB и изменяет их действие до I группы крови (бомбейский феномен). Определите возможные группы крови у детей, если у мужа II гомозиготная, у жены IV и оба родителя гетерозиготны по эпистатическому гену”

Вероятность рождения детей с i(0) группой крови в данном случае равна 2/8, или 1/4 (25%). Генотипами, у которых будет i(0) группа крови являются: IAIAhh и IAIBhh. Эпистатический рецессивный ген hh в гомозиготном состоянии всегда приводит к i(0) группе крови.

Полимерия

Полимерией называют зависимость определенного признака организма от нескольких пар аллельных генов, обладающих схожим действием. Такие гены называются полимерными. Часто выраженность признака зависит от соотношения доминантных и рецессивных аллелей – то есть чем больше доминантных генов, тем более выражен признак.

У человека полимерное действие генов заложено в наследовании количественных признаков (вес, рост, цвет кожи, давление).

Пример решения задачи №5

“Цвет кожи у мулатов наследуется по типу полимерии. При этом данный признак контролируется 2 аутосомными несцепленными генами. Сын белой женщины и негра женился на белой женщине. Может ли этот ребенок быть темнее своего отца?”

В данном случае полимерия проявляется в том, что чем больше доминантных генов в генотипе (A и B), тем более темный цвет кожи имеет человек. Это правило мы и применим для решения.

В результате первого брака (вспоминаем закон единообразия Менделя) получается AaBb – средний мулат. По условиям задачи он берет в жены белую женщину aabb. Очевидно, что в этой семье ребенок не может быть темнее своего отца: дети могут быть средними мулатами (AaBb), как отец, светлыми мулатами (aaBb, Aabb), либо белыми, как мать (aabb).

Источник: https://studarium.ru/article/128

Мутации генов гемостаза MTHFR – что это значит и что с этим делать

Гомозиготное состояние гена это

Мутация гена MTHFR является проблемой, связанной с плохим метилированием и продукцией ферментов. Мутации генов гемостаза MTHFR влияют на каждого человека по-разному. Иногда они приводят к едва заметным симптомам, а иногда приводят к серьезным, долговременным проблемам со здоровьем.

Хотя точный показатель распространенности все еще остается предметом дискуссий, считается, что 30%-50% всех людей могут иметь мутацию в гене MTHFR, который наследуется и передается от родителя к ребенку.

Как правило, это гетерозиготная мутация. Приблизительно от 14% до 20% процентов населения могут иметь более тяжелую мутацию MTHFR, которая более резко влияет на общее состояние здоровья.

Она называется гомозиготной мутацией.

Разница состоит в том, что гетерозигота – это мутация в одной аллели пары генов. То есть шанс ее проявления составляет 50%. А гомозигота – мутация в обеих аллелях пары генов, проявление в 100% случаев.

Мутация гена MTHFR была обнаружена во время завершения проекта генома человека. Исследователи поняли, что люди с этим типом наследственной мутации имели большую вероятность развития определенных заболеваний. К ним относятся: СДВГ, болезнь Альцгеймера, атеросклероз, аутоиммунные расстройства и аутизм.

Еще многое предстоит узнать о том, что означает этот тип мутации для людей, которые несут ее и продолжают передавать своим детям.

На сегодняшний день существуют десятки различных состояний здоровья, связанных с мутациями MTHFR. Но еще раз подчеркнем, что даже если вы являетесь носителем мутации – не факт, что у вас будут ее проявления. Мутация означает лишь повышение рисков.

Что такое мутация генов MTHFR

MTHFR  — это ген, который обеспечивает организм инструкциями по производству определенного фермента, называемого метилентетрагидрофолатредуктаза . То есть  MTHFR — сокращенное название этого фермента.

Есть две основные мутации MTHFR, на которых исследователи фокусируются чаще всего. Эти мутации часто называют «полиморфизмами» и влияют на гены, называемые MTHFR C677T и MTHFR A1298C.

 Также эти мутации называют – мутациями фолатного цикла, потому что они показывают, как организм преобразует фолиевую кислоту в активную форму для наилучшего усвоения.

[attention type=red]

Соответственно, если у вас есть мутации генов гемостаза MTHFR, то ваш организм плохо усваивает фолиевую кислоту и другие витамины группы B, особенно В12. Что делать в этом случае – читайте далее.

[/attention]

Мутации могут происходить в разных местах этих генов и наследоваться только от одного или обоих родителей. Наличие одного мутантного аллеля связано с повышенным риском определенных проблем со здоровьем, но наличие двух увеличивает риск намного больше.

Мутация гена MTHFR может изменить способ, которым некоторые люди метаболизируют и преобразовывают важные питательные вещества из своего рациона в активные витамины, минералы и белки.

 Генетические мутации также могут изменять уровни нейротрансмиттеров и гормонов.

 В некоторых случаях, хотя и не во всех, изменения в работе этого фермента могут влиять на параметры здоровья, включая уровень холестерина, функцию мозга, пищеварение, эндокринные функции и многое другое.

Часть о мутациях генов гемостаза MTHFR впервые узнают после анализа причин замершей беременности

1. Потребляйте больше натурального фолата, витамина В6 и витамина В12

В случае с мутациями генов фолатного цикла важно употреблять много  продуктов, богатых витаминами B6, B9 и B12.

Вы также можете принимать их в виде добавки. Однако, помните, что людям с мутациями MTHFR труднее переводить синтетическую форму фолиевой кислоты в биодоступную. Более того, прием обычной фолиевой кислоты может вызвать ухудшение симптомов.

Получение достаточного количества фолиевой кислоты особенно важно до и во время беременности. За три месяца до зачатия и в течение первого триместра беременности матери, которые получают достаточно фолиевой кислоты, снижают риск развития у детей различных проблем со здоровьем.

Людям с мутациями MTHFR критически важно получать биодоступные формы фолата в добавках, называемых L-метилфолатом или метильной формой витамина В9.

L-метилфолат сложнее упаковывать в форме капсул, поэтому вы, возможно, не сможете получать очень высокие дозы в типичных поливитаминах или добавках. Поэтому рекомендуется принимать моно-добавки под называнием 5-MTHF.

Now Foods, Метилфолат, 5000 мкг, 50 вегетарианских капсул

Thorne Research, 5-МТГФ, 5 мг, 60 капсул

Если у вас обнаружена мутация MTHFR в форме гомозиготы, то метильные комплексы фолиевой кислоты вам необходимо пропивать постоянно курсами — минимум 3 раза в год.

Наличие большего количества фолиевой кислоты в вашем рационе означает, что вы лучше способны создавать активную форму 5-MTHF. Некоторые из лучших продуктов с высоким содержанием фолиевой кислоты включают в себя:

  • Фасоль и чечевица
  • Листовые зеленые овощи, такие как сырой шпинат
  • Спаржа
  • Ромэн
  • Брокколи
  • Авокадо
  • Яркие фрукты, такие как апельсины и манго

Источник: https://blisswoman.ru/shemy/mutatsii-genov-gemostaza-mthfr-chto-eto-znachit-i-chto-delat/

Будь здоров
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: